MATH 245 Linear Algebra 2, Solutions to Assignment 4

: For 0 #£u € R® and 6 € R, let R, 5 : R?* — R3 denote the rotation about the vector u by the angle § (where
the direction of rotation is determined by the right-hand rule: the right thumb points in the direction of u
and the fingers curl in the direction of rotation).

(a) Let u = (1,1, fl)t and let 6 = Z. Find A = [Ry ).
Solution: Let v = (O, 1, l)t and w = (1,0, l)t. Let U = {u,v,w} and let B = [Ru,g]u. Note that v and w

are othogonal to u with |v| = |w| = v/2 and v x w = u, and we have H(U,w):cos_lﬁ:cos_lézg.
Thus Ry g(u) = u, Rye(v) =w and R, p(w) = w — v, and so
1 0 O
B=[Rugl,=[0 0 -1
0 1 1
We have A = PBP~! where P is the change of basis matrix P = [I]Z = (u1,us,u3). We calculate P~L.
11 1
1 0 11 0 O 1 0 1)1 0 O 1 0 11 0 O 1 003 35 ~3
1 1.0{0 1 0f]~[0 1-1 1 0]~|0 1-1+1 1 0]~|0 1 05 % 32
11 1|0 0 1 01 2[1 01 00 3[2-11 00 112 1 1
3 73 3
Thus
1 1 01 1 0 0 1 -1
A:PBP‘lzg 1 10]l00-1]-1 2 1
-1 1 1 01 1 2 -1 1
1 1 01 1 1-1 1 2 2 1
=3 1 1 0 -2 1 -1 :§—1 2 -2
-1 1 1 1 1 2 =2 1 2



2 3 —6
(b) Let B=|-3 6 2 |.Findc>0,0+#u€R?and 0<6 <7 such that B = [cRy].
6 2 3

Solution: First, let us find the eigenvalues of the rotation R, g, where 0 # u € R3 and 6 € R. Let uy = ﬁ

u
and extend {uy} to an orthonormal basis U = {ul, Usg, U3} for R3. Writing R = R, ¢, we have

1 0 0
[R]u =0 cosf —sinf
0 sinf cosé
and so
1—t 0 0
frR@®)=| 0 cos®—t —sinf |=(1—1t)((cosf—1t)*>+sint)
0 sin 6 cosf —t

= (1—1t)(cos’H —2cosft +t> +sin® ) = —(t — 1)(t> — 2cos Ot + 1)
=—(t-1(t-e?)(t—e"?).
Thus the eigenvalues of R = R, ¢ are 1,e*'%. Tt follows that for ¢ > 0, the eigenvalues of cR are ¢, ce**?.
Now let us find the eigenvalues of B. We have

2—-t 3 -6
fBt)=|B—tl|=|-3 6-t 2
6 23—t

=(2-t)(18 =9t +t3) +364+36 —4(2—1t) +9(3 — t) + 36(6 — 1)
=36—36¢+11t2 — 3+ 72 — 8+ 4t + 27 — 9t 4 216 — 36 ¢
= (3 — 11> + 77t — 343) = —(t — 7)(t* — 4t + 49)

so the eigenvalues of B are A = 7 or A = 4dv16-4-49 VIS_M‘Q =2+ +/—45 = 2 + 3v/54. Thus in order to have
B = [c Ru’g] with ¢ > 0 and 0 < 0 < 7, we must have ¢ = 7 and § = cos ™! % To find the required vector u,
we find a basis for the eigenspace E7. We have

—5 3 —6 1 5 —10 1 5 —10 1 5 -10 1 0 0
B-M"T=|-3-1 2 ]|~|-3-1 2 ~10 14 -28~(0 1 -2 ]~10 1-2
6 2 —4 0 0 0 0 0 0 0 0 O 0 0 0

so a basis for E7 is given by {u} where u = :I:((), 2, 1)t. We still need to take some care in our choice of
the vector u. If we chose u = (0, 2, 1)t7 v = (0, -1, 2)t, w = (\/570, O)t so that U = {u,v,w} is a positively

oriented orthogonal basis with |u| = |v| = |w|, then we would have
2 3 -6 0 0 5 0 —-15 25 70 0
B(u,v,w) = (-3 6 2 2 -1 0 |=(14 -2 -3/5 | =(uv,w) [0 2 35
6 2 3 1 2 0 7 4 6V5 0 —-3v5 2

so that B = [c Ruy,g}, which is not quite what we need. Instead we must choose u = (0, -2, —1)75 (or some
positive multiple of that) in order to get B = [c Ruﬁg}.



0

2: (a) Let A = 0 I

ap aip -0 Gp-1

€ M, xn(C). Find fa(t) and find a basis for each eigenspace F).

Solution: The characteristic polynomial is

—t 1 0 0
—t
fa(t) = R
0 —t 1
ap ay -+ Gp_g Ap_y—t
Expand along the last row to get
Lt 1
—t
1 ) 0 .
fA(t) = (—1)n+1a0 NI (_1)n+k+1ak —t 1 n
0 —t 1 ¢+ 1
-t 1
t 1 .
4 (_1)n+n—1a 5 1 T ( 1)n+n(an_1 _ t)
-t 1 1
1 -t 1

= (g o (1 () (S () () ()
_ (_1)n+1 (ao Lt anfgtn_Q + anflﬁn_l _ tn) )
Let A be an eienvalue of A, so f4(A\) = 0. We have

—t 1 0
A== o 0
—t 1

ago St Qp—2 Gp—1 — A

The first n — 1 rows (or if you prefer, the last n — 1 columns) are clearly linearly independent so we must

have dim Ey = 1. Let u = (1, A\, A2, -+, A»~1)". Notice that (4 — Al)u = (0,---,0,(=1)"* f4(A))" = 0 and
so {u} is a basis for F).



01 O

(b)Let A= 0 0 1 |.Find a diagonal matrix D and an invertible matrix P such that P~*AP = D.
6 5 -2

Solution: By part (a) we have

fa) = (D46 +5t —2t2 —t3) = —(t* + 26> =5t —6) = —(t + 1)(t> +t —6) = —(t + 1)(t — 2)(t + 3)

so the eigenvalues of A are A\; = —1, Ao = 2 and A3 = —3 and we can take D = diag(A1, A2, A3) =
diag(—1,2,—3). Also by part (a), we have corresponding eigenvectors u; = (1,—1,1)%, us = (1,2,4)* and
1 1 1
uz = (1,—3,9)" so we can take P = (ul,uQ,u;;) =|-1 2 -3
1 4 9

(c) Let 29 =2, 1 =2 and x2 = 1, and for n > 0 let x,,4.5 = 62, + 541 — 2¢,42. Use part (b) to find z,,.

Solution: Since x3 = 6xg + bx1 — 229 we have

X1 O 1 0 To 2
z2 | =10 0 1 x| =A| 2
T3 6 5 -2 Ta 1

Similarly we have
L2
L3
Ty

and so on. Thus

Tn+2

We calculate P~1.

Tn Zo 2
Tpi1 | =A" | 2y | =(PDPH)" | 2 | = PD"P!

= o O
N~ — ~ ~~

1 1 1)1 00 11 1]1 0
(PI)=|-1 2-3/0 1 0]~ [0 3-2|1 1
1 4 9]0 0 1 0 3 8+1 0
10 52~ 1 00|l -5 —¢
~<01—§L;;o ~(01055féfs
1 1 1
00 10 +2-1 1 00 1j1_L L
Thus we have
Tn 11 1 (=1)" I =5 =5\ /2
Ty | = (-1 2 -3 2n 2 & E1l2
Tnio 1 4 9 (=3)"™ 1 1 1 1
5 10 10

S 5
2 =(1 1 1)( n 1
(=3)") \+3



3: Let A € M,,«»(R). Suppose that A is diagonalizable over C, so there exists a diagonal matrix D € M,,x,(C)
and an invertible matrix Q € M, x,,(C) such that Q=1 AQ = D. Show that there exists an invertible matrix
P € M,»,(R) such that P~ AP is in the block-diagonal form

At

Ak
a1 b1

PlAP =
—b1 ay

ap b
—b
where each 1 x 1 block corresponds to a real eigenvalue A; of A, and each 2 x 2 block corresponds to a pair
of conjugate complex eigenvalues a; & 7 b;.

Solution: Since A is diagonalizable over C, we can choose a basis of complex eigenvectors for C™, say

(01, Vw1, w0 21, )
where each v; is a complex eigenvector for a real eigenvalue );, each w, is a complex eigenvector for a
complex eigenvalue a, + b, with b, > 0, and each z3 is a complex eigenvector for a complex eigenvalue
ag — 1bg with bg > 0. We make several preliminary remarks.

First we remark that the eigenvectors v; can be chosen to be real vectors. This is because for a real
eigenvalue A, when we use our standard procedure to find a basis for the eigenspace Ey = Null(A — A\I) by
reducing the real matrix A — AI, we obtain a basis of real vectors.

Next we remark that we must have m = [ because the characteristic polynomial f4 is a real polynomial,
so each complex root p = a+1b occurs with the same algebraic multiplicity as its conjugate &t = a — ¢ b, and
since A is diagonalizable, the geometric and algebraic multiplicities are equal, so dim £\ = dim Fx.

Finally, we remark that we can choose to have z, = W, for each « = 1,---,1. To see this, suppose
that {wq,---,w,.} is a basis for the eigenspace of p = a + ib. We claim that {w;,---,w,} is a basis
for the eigenspace of . Since A is real, we have Aw, = Aw, = W, = & Wy, so each w, does lie in
the eigenspace Ey. Since {wy,---,w,} is linearly independent, it follows immediately that {w,,---,@,} is
linearly independent. Since dim E,, = dim Ey, it follows that {w,,---,@,} is a basis for Fy, as claimed.

From these remarks, it follows that we can choose a basis of complex eigenvectors

V= {’U17"'>’Uk>’w17'"awlymly"wwl}
for C™ such that each v; is a real eigenvector for a real eigenvalue \; and each w, is a complex eigenvector
for a complex eigenvalue p, = aqo + b, with b, > 0.
For each a =1, ---,1, write wy, = To + 1y, With x4,y, € R", and let

U={vr, 0k @1,Y1, T, )
We claim that U/ is linearly independent over R. Since w, = x4 4+ 1y, and Wy = T4 — Yo, We have
SpancV C Spanc U, and since z, = %wa + %Ea and y, = 7%‘ Wo + %Ea, we have Spanc U C SpancV.
Thus Spanc U = SpancV, so U is a basis for C™. Since U is linearly independent over C, it is also linearly
independent over R.
Let P be the matrix whose columns are the vectors in &/. Let B be the block-diagonal matrix in the
statement of the theorem. We claim that AP = PB so that P~'AP = B. Since Av; = \v; for 1 <i <k, it

follows that the first k& columns of AP are equal to those of PB. For 1 < o <, since Aw, = piqws we have

A(Ta +iYa) = (@a +iba)(Ta +1Ya) = (Gala = baYa) + i(daYa + baa) -
Equating real and imaginary parts gives
ATy = aZa — balYa , AYa = baTa + baYa -
It follows that the remaining columns of AP are equal to those of PB.



4: (a) Let U and V be inner product spaces over C. Let L : U — V be a linear map, and suppose that the
adjoint L* : V — U exists. Show that Null(L*L) = Null(L) = Range(L*)".

Solution: First we show that Null(L*L) = Null(L). Let z € U. If L(z) = 0 then L*L(z) = 0, so we have
Null(L) € Null(L*L). Conversely, if L*L(z) = 0 then we have

|L(@)* = (L(x), L(x)) = (@, L"L(z)) = (z,0) = 0
so that L(z) = 0, and hence Null(L*L) C Null(L).
Next we show that Null(L) = Range(L*)*. Indeed for x € U we have

z €Null(L) <= L(z)=0
— (L(z),y)=0forallyeV
— (z,L*(y))=0forallyeV
<= (z,z) =0 for all z € Range(L")
<= 2 € Range(L*)*.

(b) Let U be an inner product space over C. Let L : U — U be linear and suppose that L* exists. Show
that L = L* <= (L(z),z) € Rforallz € U.

Solution: One direction is fairly easy. Indeed if L = L* then for all x € U we have
(L(x), x) = (z, L™ () = (z, L(z)) = (L(x), )

and hence (L(z),z) € R.
The other direction is more difficult. We first prove the following lemma:

Lemma: If (L(x),x) =0 for all z € U then L = 0.
Proof: Suppose that (L(z),z) =0 for all z € U. Let x,y € U. Then
0= (L(z +y),(x+y)) = (L(x),z) + (L(x),y) + (L(y), ) + (L(y), y) -
Since (L(x),z) = 0 and (L(y),y) = 0, this gives
0= (L(z),y) + (L(y),z) (1).
Also, we have

0= (L(z +1y), (z +1iy)) = (L(z),z) + (L(x), iy) + (iL(y), z) + (iL(y),1y) = —i(L(x),y) + i(L(y), ) .
Multiplying both sides by ¢ gives

Solving equations (1) and (2) gives (L(z),y) = 0 and (L(y),z) = 0. Since (L(z),y) = 0 for all y € U, we
know that L(z) = 0. Since L(z) = 0 for all x € U, we know that L = 0. This proves the lemma.

Now we use the lemma to prove that if (L(z),z) € R for all © € U then we must have L = L*. Suppose
that (L(z),z) € R for all x € U. Let z € U. Since (L(x),z) € R, we have

(L(x),2) = (L(z),2) = (2, L*(x)) = (L (z),z)

and so
0= (L(z),z) — (L*(x),z) = (L — L*)(x),z) .

Since ((L — L*)(z),z) = 0 for all z € U, it follows from the above lemma that L — L* = 0, that is L = L*.



5: Let F = R or C. Let V be the inner product space over F consisting of all sequences a = (a1, a2, as,-+)
with each ak € F such that only finitely many of the terms aj are non-zero, with the inner product given

o0
by (a,b) = Z apbg. Let U = {a = (ay,a2,---) € V| Y ar = 0}. The standard basis for V' is the basis
k=1

S = {61762763, -} where e, = (en,1,€n,2,€n.3, ) with e, = dp k-
(a) Show that U+ = {0}.
Solution: Let a = (ay,as,---) € U*. Since only finitely many of the terms aj, are non-zero, we can choose a
positive integer n so that a; = 0 for all k& > n, that is a = (a1, a2,++,a,,0,0,--+). For each k =1,2,---,n
notice that e, — e, 41 € U, so since a € U+ we have

0= {a,ex —ent1) = (a,ex) — (a,ept1) = aQx — Apy1 = G -

(b) Show that dim(U?%) =1
o0

Solution: Define f : V. — F by f(a) = > ax. Note that f is well-defined since only finitely many of the terms
k=1

aj, are NON-zero, and f is linear, so we have f € V*. We claim that U° = Span{f}. For a = (a,as, ) € U,
we have f(a) = Z ar = 0, so f € U° and hence Span{f} C U". Conversely, let g € U° so that g(u) = 0

for all u € U. Notlce that for all k =1,2,3,--- we have e; — e, € U, s0 0 = g(e1 — ex) = g(e1) — g(ex), and
hence g(ex) = g(e1). Foralla € V, we have

o0

9(0) = g( 3 aer) = 3 argler) = > argler) = (

k=1 k=1 k=1 k
Thus g = g(e1) f € Span{f} and hence U° C Span{f}.

(c) Let F = {f1, f2, f3,---} where f, € V* is determined by f,(ex) = 0,k Show that F is linearly
independent but does not span V*.

118

ax) gle1) = gle1) f(a) -

1

Solution: We claim that F is linearly independent. Suppose that some (finite) linear combination of the
n

n
elements of F is equal to zero, say > ¢; f; = 0. Then for every a € V we have Y ¢; fi(a) = 0, and in
i=1 i=1
n

particular for every k = 1,2,3,--- we have 0 = Z ¢ fileg) = Z ¢; 0i ) = ¢. Thus F is linearly independent.
=

On the other hand, we claim that F does not span V*. Let f € V* be the map from part (b) given by

fla) = Z ay. Notice that f cannot be equal to any (finite) linear combination of the elements of F, since
k=1

n
for g = > ¢; fi we have g(e,41) =0 while f(e,11) =1, so g # f. Thus F does not span V*.
i=1

(d) Define E : V — V** by E(a)(f) = f(a), where a € V and f € V*. Show that F is 1:1 but not onto.

Solution: Note that E is linear, so to show that E is 1:1 it suffices to show that Null(E) = {0}. Let
a € Null(E) so E(a) = 0. Then for all f € V* we have f(a) = E(a)(f) = 0. In particular, for all
k=1,2,3--- we have

0= fi(a) = fu( iaiei) = ifk:(ei) = if:laiék,i =a

and so a = 0.

We claim that E is not onto. Extend the linearly independent set F to a basis F UG for V* (where F
and G are disjoint). Let h: V* — F be the (unique) linear map given by h(fx) =1 for all k =1,2,3,--- and
h(g) = 0 for all g € G. Notice that h cannot be in the range of F since given a = (a1,a9,--+) € V we can
choose k so that ax, = 0, and then we have E(a)(fx) = fr(a) = 0 while h(fx) = 1, so E(a) # h.

o0
(e) Define L : V — V by L(a); = > a;, where a € V. Show that L has no adjoint.
i=k

k
Solution: Notice that for all k¥ = 1,2,3,--- we have L(ey) = (1,1,---,1,0,0,0,---) = > e;, and so
i=1
(L(ex),e1) = 1. Suppose, for a contradiction, that L had an adjoint L*. Let a = L*(e;) € V. Choose k so that
ar, = 0. Then (eg, a) = a; = 0. But this contradicts the fact that (ex,a) = (ex, L*(e1)) = (L(ex), e1) = 1.



