
MATH 245 Linear Algebra 2, Solutions to Assignment 4

1: For 0 6= u ∈ R3 and θ ∈ R, let Ru,θ : R3 → R3 denote the rotation about the vector u by the angle θ (where
the direction of rotation is determined by the right-hand rule: the right thumb points in the direction of u
and the fingers curl in the direction of rotation).

(a) Let u =
(
1, 1,−1

)t and let θ = π
3 . Find A =

[
Ru,θ

]
.

Solution: Let v =
(
0, 1, 1

)t and w =
(
1, 0, 1

)t. Let U = {u, v, w} and let B =
[
Ru,θ

]
U . Note that v and w

are othogonal to u with |v| = |w| =
√

2 and v × w = u, and we have θ(v, w) = cos−1 v.w
|v||w| = cos−1 1

2 = π
3 .

Thus Ru,θ(u) = u, Ru,θ(v) = w and Ru,θ(w) = w − v, and so

B =
[
Ru,θ

]
U =

 1 0 0
0 0 −1
0 1 1

 .

We have A = PBP−1 where P is the change of basis matrix P =
[
I
]U
S =

(
u1, u2, u3

)
. We calculate P−1. 1 0 1

1 1 0
−1 1 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 ∼
 1 0 1

0 1 −1
0 1 2

∣∣∣∣∣∣
1 0 0
−1 1 0

1 0 1

 ∼
 1 0 1

0 1 −1
0 0 3

∣∣∣∣∣∣
1 0 0
−1 1 0

2 −1 1

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣∣
1
3

1
3 −

1
3

− 1
3

2
3

1
3

2
3 −

1
3

1
3


Thus

A = PBP−1 =
1
3

 1 0 1
1 1 0
−1 1 1

 1 0 0
0 0 −1
0 1 1

 1 1 −1
−1 2 1

2 −1 1


=

1
3

 1 0 1
1 1 0
−1 1 1

 1 1 −1
−2 1 −1

1 1 2

 =
1
3

 2 2 1
−1 2 −2
−2 1 2

 .



(b) Let B =

 2 3 −6
−3 6 2

6 2 3

. Find c > 0, 0 6= u ∈ R3 and 0 ≤ θ ≤ π such that B =
[
cRu,θ

]
.

Solution: First, let us find the eigenvalues of the rotation Ru,θ, where 0 6= u ∈ R3 and θ ∈ R. Let u1 = u
|u|

and extend {u1} to an orthonormal basis U =
{
u1, u2, u3

}
for R3. Writing R = Ru,θ, we have

[
R
]
U =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


and so

fR(t) =

∣∣∣∣∣∣
1− t 0 0

0 cos θ − t − sin θ
0 sin θ cos θ − t

∣∣∣∣∣∣ = (1− t)
(
(cos θ − t)2 + sin2 t

)
= (1− t)(cos2 θ − 2 cos θ t+ t2 + sin2 θ) = −(t− 1)(t2 − 2 cos θ t+ 1)

= −(t− 1)
(
t− ei θ

)(
t− e−i θ

)
.

Thus the eigenvalues of R = Ru,θ are 1, e±i θ. It follows that for c > 0, the eigenvalues of cR are c, c e±i θ.
Now let us find the eigenvalues of B. We have

fB(t) =
∣∣B − tI∣∣ =

∣∣∣∣∣∣
2− t 3 −6
−3 6− t 2

6 2 3− t

∣∣∣∣∣∣
= (2− t)(18− 9t+ t2) + 36 + 36− 4(2− t) + 9(3− t) + 36(6− t)
= 36− 36 t+ 11 t2 − t3 + 72− 8 + 4t+ 27− 9t+ 216− 36 t

= −(t3 − 11 t2 + 77 t− 343) = −(t− 7)(t2 − 4t+ 49)

so the eigenvalues of B are λ = 7 or λ = 4±
√

16−4·49
2 = 2 ±

√
−45 = 2 ± 3

√
5 i . Thus in order to have

B =
[
cRu,θ

]
with c > 0 and 0 ≤ θ ≤ π, we must have c = 7 and θ = cos−1 2

7 . To find the required vector u,
we find a basis for the eigenspace E7. We have

B − 7I =

−5 3 −6
−3 −1 2

6 2 −4

 ∼
 1 5 −10
−3 −1 2

0 0 0

 ∼
 1 5 −10

0 14 −28
0 0 0

 ∼
 1 5 −10

0 1 −2
0 0 0

 ∼
 1 0 0

0 1 −2
0 0 0


so a basis for E7 is given by {u} where u = ±

(
0, 2, 1

)t. We still need to take some care in our choice of
the vector u. If we chose u =

(
0, 2, 1

)t, v =
(
0,−1, 2

)t, w =
(√

5, 0, 0
)t so that U = {u, v, w} is a positively

oriented orthogonal basis with |u| = |v| = |w|, then we would have

B(u, v, w) =

 2 3 −6
−3 6 2

6 2 3

 0 0
√

5
2 −1 0
1 2 0

 =

 0 −15 2
√

5
14 −2 −3

√
5

7 4 6
√

5

 = (u, v, w)

 7 0 0
0 2 3

√
5

0 −3
√

5 2


so that B =

[
cRu,−θ

]
, which is not quite what we need. Instead we must choose u =

(
0,−2,−1

)t (or some
positive multiple of that) in order to get B =

[
cRu,θ

]
.



2: (a) Let A =


0
... I
0
a0 a1 · · · an−1

 ∈Mn×n(C). Find fA(t) and find a basis for each eigenspace Eλ.

Solution: The characteristic polynomial is

fA(t) =

∣∣∣∣∣∣∣∣∣∣∣

−t 1 0 0

−t
. . .

...
. . . 1 0

0 −t 1
a0 a1 · · · an−2 an−1 − t

∣∣∣∣∣∣∣∣∣∣∣
.

Expand along the last row to get

fA(t) = (−1)n+1a0

∣∣∣∣∣∣∣∣
1 0
−t 1

. . . . . .
0 −t 1

∣∣∣∣∣∣∣∣+ · · ·+ (−1)n+k+1ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−t 1

−t
. . .
. . . 1
−t

1
−t 1

. . . . . .
−t 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·

. . .+ (−1)n+n−1an−2

∣∣∣∣∣∣∣∣∣∣∣

−t 1

−t
. . .
. . . 1
−t 1

1

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n+n(an−1 − t)

∣∣∣∣∣∣∣∣∣
−t 1

−t
. . .
. . . 1
−t 1

∣∣∣∣∣∣∣∣∣
= (−1)n+1a0 + · · ·+ (−1)n+k+1ak(−t)k + · · · (−1)n+n−1an−2(−t)n−1 + (−1)n+n(an−1 − t)(−t)n

= (−1)n+1
(
a0 + · · ·+ an−2t

n−2 + an−1t
n−1 − tn

)
.

Let λ be an eienvalue of A, so fA(λ) = 0. We have

A− λI =


−t 1 0

. . . . . .
...

−t 1 0
−t 1

a0 · · · an−2 an−1 − λ


The first n − 1 rows (or if you prefer, the last n − 1 columns) are clearly linearly independent so we must
have dimEλ = 1. Let u =

(
1, λ, λ2, · · · , λn−1

)t. Notice that (A− λI
)
u =

(
0, · · · , 0, (−1)n+1fA(λ)

)t = 0 and
so {u} is a basis for Eλ.



(b) Let A =

 0 1 0
0 0 1
6 5 −2

. Find a diagonal matrix D and an invertible matrix P such that P−1AP = D.

Solution: By part (a) we have

fA(t) = (−1)4(6 + 5t− 2t2 − t3) = −(t4 + 2t2 − 5t− 6) = −(t+ 1)(t2 + t− 6) = −(t+ 1)(t− 2)(t+ 3)
so the eigenvalues of A are λ1 = −1, λ2 = 2 and λ3 = −3 and we can take D = diag(λ1, λ2, λ3) =
diag(−1, 2,−3). Also by part (a), we have corresponding eigenvectors u1 = (1,−1, 1)t, u2 = (1, 2, 4)t and

u3 = (1,−3, 9)t so we can take P =
(
u1, u2, u3

)
=

 1 1 1
−1 2 −3

1 4 9

.

(c) Let x0 = 2, x1 = 2 and x2 = 1, and for n ≥ 0 let xn+3 = 6xn + 5xn+1 − 2xn+2. Use part (b) to find xn.

Solution: Since x3 = 6x0 + 5x1 − 2x2 we havex1

x2

x3

 =

 0 1 0
0 0 1
6 5 −2

x0

x1

x2

 = A

 2
2
1

 .

Similarly we have x2

x3

x4

 = A

x1

x2

x3

 = A2

 2
2
1

 , and

x3

x4

x5

 = A3

 2
2
1

 ,

and so on. Thus  xn
xn+1

xn+2

 = An

x0

x1

x2

 = (PDP−1)n

 2
2
1

 = PDnP−1

 2
2
1

 .

We calculate P−1.

(
P
∣∣I) =

 1 1 1
−1 2 −3

1 4 9

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 ∼
 1 1 1

0 3 −2
0 3 8

∣∣∣∣∣∣
1 0 0
1 1 0
−1 0 1


∼

 1 0 5
3

0 1 − 2
3

0 0 10

∣∣∣∣∣∣
2
3 −

1
3 0

1
3

1
3 0

−2 −1 1

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣∣
1 − 1

6 −
1
6

3
15

4
15

1
15

− 1
5 −

1
10

1
10


Thus we have  xn

xn+1

xn+2

 =

 1 1 1
−1 2 −3

1 4 9

 (−1)n

2n

(−3)n


 1 − 1

6 −
1
6

3
15

4
15

1
15

− 1
5 −

1
10

1
10


 2

2
1


xn = ( 1 1 1 )

 (−1)n

2n

(−3)n

 3
2
1
− 1

2


= ( 1 1 1 )

 3
2 (−1)n

2n

− 1
2 (−3)n

 = 3
2 (−1)n + 2n − 1

2 (−3)n .



3: Let A ∈Mn×n(R). Suppose that A is diagonalizable over C, so there exists a diagonal matrix D ∈Mn×n(C)
and an invertible matrix Q ∈Mn×n(C) such that Q−1AQ = D. Show that there exists an invertible matrix
P ∈Mn×n(R) such that P−1AP is in the block-diagonal form

P−1AP =



λ1

. . .
λk

a1 b1
−b1 a1

. . .
al bl
−bl al


where each 1× 1 block corresponds to a real eigenvalue λj of A, and each 2× 2 block corresponds to a pair
of conjugate complex eigenvalues aj ± i bj .
Solution: Since A is diagonalizable over C, we can choose a basis of complex eigenvectors for Cn, say{

v1, · · · , vk, w1, · · · , wl, z1, · · · , zm
}

where each vi is a complex eigenvector for a real eigenvalue λi, each wα is a complex eigenvector for a
complex eigenvalue aα + i bα with bα > 0, and each zβ is a complex eigenvector for a complex eigenvalue
aβ − i bβ with bβ > 0. We make several preliminary remarks.

First we remark that the eigenvectors vi can be chosen to be real vectors. This is because for a real
eigenvalue λ, when we use our standard procedure to find a basis for the eigenspace Eλ = Null(A− λI) by
reducing the real matrix A− λI, we obtain a basis of real vectors.

Next we remark that we must have m = l because the characteristic polynomial fA is a real polynomial,
so each complex root µ = a+ i b occurs with the same algebraic multiplicity as its conjugate µ = a− i b, and
since A is diagonalizable, the geometric and algebraic multiplicities are equal, so dimEλ = dimEλ.

Finally, we remark that we can choose to have zα = wα for each α = 1, · · · , l. To see this, suppose
that {w1, · · · , wr} is a basis for the eigenspace of µ = a + i b. We claim that {w1, · · · , wr} is a basis
for the eigenspace of µ. Since A is real, we have Awα = Awα = µwα = µ wα, so each wα does lie in
the eigenspace Eµ. Since {w1, · · · , wr} is linearly independent, it follows immediately that {w1, · · · , wr} is
linearly independent. Since dimEµ = dimEµ, it follows that {w1, · · · , wr} is a basis for Eµ, as claimed.

From these remarks, it follows that we can choose a basis of complex eigenvectors

V =
{
v1, · · · , vk, w1, · · · , wl, w1, · · · , wl

}
for Cn such that each vi is a real eigenvector for a real eigenvalue λi and each wα is a complex eigenvector
for a complex eigenvalue µα = aα + i bα with bα > 0.

For each α = 1, · · · , l, write wα = xα + i yα with xα, yα ∈ Rn, and let

U =
{
v1, · · · , vk, x1, y1, · · · , xl, yl

}
.

We claim that U is linearly independent over R. Since wα = xα + i yα and wα = xα − i yα, we have
SpanCV ⊂ SpanC U , and since xα = 1

2 wα + 1
2 wα and yα = − i

2 wα + i
2 wα, we have SpanC U ⊂ SpanCV.

Thus SpanC U = SpanCV, so U is a basis for Cn. Since U is linearly independent over C, it is also linearly
independent over R.

Let P be the matrix whose columns are the vectors in U . Let B be the block-diagonal matrix in the
statement of the theorem. We claim that AP = PB so that P−1AP = B. Since Avi = λivi for 1 ≤ i ≤ k, it
follows that the first k columns of AP are equal to those of PB. For 1 ≤ α ≤ l, since Awα = µαwα we have

A(xα + i yα) = (aα + i bα)(xα + i yα) = (aαxα − bαyα) + i(aαyα + bαxα) .
Equating real and imaginary parts gives

Axα = aαxα − bαyα , Ayα = bαxα + bαyα .

It follows that the remaining columns of AP are equal to those of PB.



4: (a) Let U and V be inner product spaces over C. Let L : U → V be a linear map, and suppose that the
adjoint L∗ : V → U exists. Show that Null(L∗L) = Null(L) = Range(L∗)⊥.

Solution: First we show that Null(L∗L) = Null(L). Let x ∈ U . If L(x) = 0 then L∗L(x) = 0, so we have
Null(L) ⊂ Null(L∗L). Conversely, if L∗L(x) = 0 then we have

|L(x)|2 = 〈L(x), L(x)〉 = 〈x, L∗L(x)〉 = 〈x, 0〉 = 0
so that L(x) = 0, and hence Null(L∗L) ⊂ Null(L).

Next we show that Null(L) = Range(L∗)⊥. Indeed for x ∈ U we have

x ∈ Null(L) ⇐⇒ L(x) = 0
⇐⇒ 〈L(x), y〉 = 0 for all y ∈ V
⇐⇒ 〈x, L∗(y)〉 = 0 for all y ∈ V
⇐⇒ 〈x, z〉 = 0 for all z ∈ Range(L∗)

⇐⇒ x ∈ Range(L∗)⊥ .

(b) Let U be an inner product space over C. Let L : U → U be linear and suppose that L∗ exists. Show
that L = L∗ ⇐⇒

〈
L(x), x

〉
∈ R for all x ∈ U .

Solution: One direction is fairly easy. Indeed if L = L∗ then for all x ∈ U we have

〈L(x), x〉 = 〈x, L∗(x)〉 = 〈x, L(x)〉 = 〈L(x), x〉
and hence 〈L(x), x〉 ∈ R.

The other direction is more difficult. We first prove the following lemma:

Lemma: If 〈L(x), x〉 = 0 for all x ∈ U then L = 0.

Proof: Suppose that 〈L(x), x〉 = 0 for all x ∈ U . Let x, y ∈ U . Then

0 = 〈L(x+ y), (x+ y)〉 = 〈L(x), x〉+ 〈L(x), y〉+ 〈L(y), x〉+ 〈L(y), y〉 .
Since 〈L(x), x〉 = 0 and 〈L(y), y〉 = 0, this gives

0 = 〈L(x), y〉+ 〈L(y), x〉 (1).
Also, we have

0 = 〈L(x+ iy), (x+ iy)〉 = 〈L(x), x〉+ 〈L(x), iy〉+ 〈iL(y), x〉+ 〈iL(y), iy〉 = −i〈L(x), y〉+ i〈L(y), x〉 .
Multiplying both sides by i gives

0 = 〈L(x), y〉 − 〈L(y), x〉 (2).

Solving equations (1) and (2) gives 〈L(x), y〉 = 0 and 〈L(y), x〉 = 0. Since 〈L(x), y〉 = 0 for all y ∈ U , we
know that L(x) = 0. Since L(x) = 0 for all x ∈ U , we know that L = 0. This proves the lemma.

Now we use the lemma to prove that if 〈L(x), x〉 ∈ R for all x ∈ U then we must have L = L∗. Suppose
that 〈L(x), x〉 ∈ R for all x ∈ U . Let x ∈ U . Since 〈L(x), x〉 ∈ R, we have

〈L(x), x〉 = 〈L(x), x〉 = 〈x, L∗(x)〉 = 〈L∗(x), x〉
and so

0 = 〈L(x), x〉 − 〈L∗(x), x〉 =
〈
(L− L∗)(x), x

〉
.

Since
〈
(L− L∗)(x), x

〉
= 0 for all x ∈ U , it follows from the above lemma that L− L∗ = 0, that is L = L∗.



5: Let F = R or C. Let V be the inner product space over F consisting of all sequences a = (a1, a2, a3, · · ·)
with each ak ∈ F such that only finitely many of the terms ak are non-zero, with the inner product given

by 〈a, b〉 =
∞∑
k=1

akbk. Let U =
{
a = (a1, a2, · · ·) ∈ V

∣∣∣ ∞∑
k=1

ak = 0
}

. The standard basis for V is the basis

S = {e1, e2, e3, · · ·} where en = (en,1, en,2, en,3, · · ·) with en,k = δn,k.
(a) Show that U⊥ = {0}.
Solution: Let a = (a1, a2, · · ·) ∈ U⊥. Since only finitely many of the terms ak are non-zero, we can choose a
positive integer n so that ak = 0 for all k > n, that is a = (a1, a2, · · · , an, 0, 0, · · ·). For each k = 1, 2, · · · , n
notice that ek − en+1 ∈ U , so since a ∈ U⊥ we have

0 = 〈a, ek − en+1〉 = 〈a, ek〉 − 〈a, en+1〉 = ak − an+1 = ak .

(b) Show that dim(U0) = 1.

Solution: Define f : V → F by f(a) =
∞∑
k=1

ak. Note that f is well-defined since only finitely many of the terms

ak are non-zero, and f is linear, so we have f ∈ V ∗. We claim that U0 = Span{f}. For a = (a1, a2, · · ·) ∈ U ,

we have f(a) =
∞∑
k=1

ak = 0, so f ∈ U0 and hence Span{f} ⊂ U0. Conversely, let g ∈ U0 so that g(u) = 0

for all u ∈ U . Notice that for all k = 1, 2, 3, · · · we have e1 − ek ∈ U , so 0 = g(e1 − ek) = g(e1)− g(ek), and
hence g(ek) = g(e1). For all a ∈ V , we have

g(a) = g
( ∞∑
k=1

akek
)

=
∞∑
k=1

ak g(ek) =
∞∑
k=1

ak g(e1) =
( ∞∑
k=1

ak
)
g(e1) = g(e1) f(a) .

Thus g = g(e1) f ∈ Span{f} and hence U0 ⊂ Span{f}.
(c) Let F =

{
f1, f2, f3, · · ·

}
where fn ∈ V ∗ is determined by fn(ek) = δn,k. Show that F is linearly

independent but does not span V ∗.

Solution: We claim that F is linearly independent. Suppose that some (finite) linear combination of the

elements of F is equal to zero, say
n∑
i=1

ci fi = 0. Then for every a ∈ V we have
n∑
i=1

ci fi(a) = 0, and in

particular for every k = 1, 2, 3, · · · we have 0 =
n∑
i=1

ci fi(ek) =
n∑
i=1

ci δi,k = ck. Thus F is linearly independent.

On the other hand, we claim that F does not span V ∗. Let f ∈ V ∗ be the map from part (b) given by

f(a) =
∞∑
k=1

ak. Notice that f cannot be equal to any (finite) linear combination of the elements of F , since

for g =
n∑
i=1

ci fi we have g(en+1) = 0 while f(en+1) = 1, so g 6= f . Thus F does not span V ∗.

(d) Define E : V → V ∗∗ by E(a)(f) = f(a), where a ∈ V and f ∈ V ∗. Show that E is 1:1 but not onto.

Solution: Note that E is linear, so to show that E is 1:1 it suffices to show that Null(E) = {0}. Let
a ∈ Null(E) so E(a) = 0. Then for all f ∈ V ∗ we have f(a) = E(a)(f) = 0. In particular, for all
k = 1, 2, 3 · · · we have

0 = fk(a) = fk
( ∞∑
i=1

ai ei
)

=
∞∑
i=1

fk(ei) =
∞∑
i=1

ai δk,i = ak

and so a = 0.
We claim that E is not onto. Extend the linearly independent set F to a basis F ∪ G for V ∗ (where F

and G are disjoint). Let h : V ∗ → F be the (unique) linear map given by h(fk) = 1 for all k = 1, 2, 3, · · · and
h(g) = 0 for all g ∈ G. Notice that h cannot be in the range of E since given a = (a1, a2, · · ·) ∈ V we can
choose k so that ak = 0, and then we have E(a)(fk) = fk(a) = 0 while h(fk) = 1, so E(a) 6= h.

(e) Define L : V → V by L(a)k =
∞∑
i=k

ai, where a ∈ V . Show that L has no adjoint.

Solution: Notice that for all k = 1, 2, 3, · · · we have L(ek) = (1, 1, · · · , 1, 0, 0, 0, · · ·) =
k∑
i=1

ei, and so

〈L(ek), e1〉 = 1. Suppose, for a contradiction, that L had an adjoint L∗. Let a = L∗(e1) ∈ V . Choose k so that
ak = 0. Then 〈ek, a〉 = ak = 0. But this contradicts the fact that 〈ek, a〉 = 〈ek, L∗(e1)〉 = 〈L(ek), e1〉 = 1.


