1: (a) Let $A =$ $\sqrt{ }$ \mathcal{L} 3 2 −4 2 0 −2 -4 -2 3 \setminus Find an orthogonal matrix P and a diagonal matrix D such that $P^t A P = D$.

Solution: The characteristic polynomial of A is

$$
f_A(t) = \begin{vmatrix} 3-t & 2 & -4 \\ 2 & -t & -2 \\ -4 & -2 & 3-t \end{vmatrix}
$$

= -t(t³ - 6t + 9) + 16 + 16 - 4(3 - t) - 4(3 - t) + 16t
= -(t³ - 6t² - 15t - 8) = -(t + 1)(t² - 7t - 8) = -(t + 1)²(t - 8)

so the eigenvalues are $\lambda_1 = 8$ and $\lambda_2 = \lambda_3 = -1$. When $\lambda = \lambda_1 = 8$ we have

$$
A - \lambda I = \begin{pmatrix} -5 & 2 & -4 \\ 2 & -8 & -2 \\ -4 & -2 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & -4 & -1 \\ 2 & -8 & -2 \\ -4 & -2 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & -4 & -1 \\ 0 & 0 & 0 \\ 0 & -18 & -9 \end{pmatrix} \sim \begin{pmatrix} 1 & -4 & -1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}
$$

can take $v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ so that $\{v_1\}$ is a basis for the eigenspace E_8 , then let $u_1 = \frac{v_1}{1} = \frac{1}{3} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Since

so we $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ 1 so that ${v_1}$ is a basis for the eigenspace E_8 , then let $u_1 =$ $\frac{v_1}{|v_1|} = \frac{1}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$. Since

A is symmetric, we know that its eigenspaces are orthogonal so we have $E_{-1} = E_8^{\perp}$. To find a basis for E_{-1} we can, by inspection, choose a unit vector u_2 which is orthogonal to u_1 and then choose $u_3 = u_1 \times u_2$. We $\left(1\right)$ $\left(2\right)$ $\left(1\right)$ $\left(1\right)$

choose
$$
u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}
$$
 and $u_3 = \frac{1}{3\sqrt{2}} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{3\sqrt{2}} \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix}$. Thus we can orthogonally diagonalize A using $P = (u_1, u_2, u_3) = \begin{pmatrix} \frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \\ \frac{1}{3} & 0 & -\frac{4}{3\sqrt{2}} \\ -\frac{2}{3} & \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} \end{pmatrix}$ and $D = \text{diag}(\lambda_1, \lambda_2, \lambda_3) = \begin{pmatrix} 8 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

(b) Let $A = \begin{pmatrix} 2+i & 1+i \\ i & 2+i \end{pmatrix}$ $i = 3 + i$). Find a unitary matrix P and an upper-triangular matrix T so that $P^*AP = T$. Solution: The characteristic polynomial of A is

$$
f_A(t) = \begin{vmatrix} (2+i) - t & 1+i \\ i & (3+i) - t \end{vmatrix}
$$

= $t^2 - (5+2i) t + (5+5i) - (-1+i) = t^2 - (5+2i) t + (6+4i)$

The eigenvalues are

$$
\lambda = \frac{(5+2i) \pm \sqrt{(21+20i) - (24+16i)}}{2} = \frac{(5+2i) \pm \sqrt{-3+4i}}{2} = \frac{(5+2i) \pm (1+2i)}{2} = 3+2i, 2,
$$

say $\lambda_1 = 2$ and $\lambda_2 = 3+2i$. When $\lambda = \lambda_1 = 2$ we have

$$
A - \lambda I = \begin{pmatrix} i & 1+i \\ i & 1+i \end{pmatrix} \sim \begin{pmatrix} 1 & 1-i \\ 0 & 0 \end{pmatrix}
$$

so we can take $v_1 = \begin{pmatrix} -1+i \\ 1 \end{pmatrix}$ 1 so that $\{v_1\}$ is a basis for E_{λ_1} . By inspection, the vector $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $1+i$ $\big)$ is orthogonal to v_1 . Normalize these vectors to get $u_1 = \frac{v_1}{|v_1|}$ $\frac{v_1}{|v_1|} = \frac{1}{\sqrt{2}}$ 3 $\bigg(-1+i\bigg)$ 1) and $u_2 = \frac{v_2}{\sqrt{v_2}}$ $\frac{v_2}{|v_2|} = \frac{1}{\sqrt{2}}$ 3 $\begin{pmatrix} 1 \end{pmatrix}$ $1+i$ \setminus so that $\{u_1, u_2\}$ is an orthonormal basis for \mathbb{C}^2 . Thus we can take

$$
P = (u_1, u_2) = \frac{1}{\sqrt{3}} \begin{pmatrix} -1+i & 1 \\ 1 & 1+i \end{pmatrix}, \text{ and}
$$

\n
$$
T = P^*AP = \frac{1}{3} \begin{pmatrix} -1-i & 1 \\ 1 & 1-i \end{pmatrix} \begin{pmatrix} 2+i & 1+i \\ i & 3+i \end{pmatrix} \begin{pmatrix} -1+i & 1 \\ 1 & 1+i \end{pmatrix}
$$

\n
$$
= \frac{1}{3} \begin{pmatrix} -1-i & 1 \\ 1 & 1-i \end{pmatrix} \begin{pmatrix} -2+2i & 2+3i \\ 2 & 2+5i \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 6 & 3 \\ 0 & 9+6i \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 3+2i \end{pmatrix}.
$$

2: Find a singular value decomposition $A = Q \Sigma P^*$ for the matrix $A =$ $\sqrt{ }$ $\overline{ }$ 1 2 2 0 3 1 1 1 \setminus $\vert \cdot \vert$

Solution: We have

$$
A^*A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ 3 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 15 & 6 \\ 6 & 6 \end{pmatrix}.
$$

The characteristic polynomial of A^*A is

$$
f_{A^*A}(t) = |A^*A - tI| = \begin{vmatrix} 15 - t & 6 \\ 6 & 6 - t \end{vmatrix} = t^2 - 21t + 54 = (t - 3)(t - 18)
$$

so the eigenvalues of A^*A are $\lambda_1 = 18$, $\lambda_2 = 3$, and hence the singular values of A are $\sigma_1 = 3\sqrt{2}$, $\sigma_2 =$ √ 3, so we can take √

$$
\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 3\sqrt{2} & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.
$$

When $\lambda = \lambda_1 = 18$ we have

$$
A^*A - \lambda I = \begin{pmatrix} -3 & 6 \\ 6 & -12 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}
$$

so $u_1 = \frac{1}{\sqrt{2}}$ 5 $\sqrt{2}$ 1) is a unit eigenvector for λ_1 . The eigenspace for λ_2 is orthogonal so $u_2 = \frac{1}{\sqrt{2}}$ 5 (-1) 2 is a unit eigenvector for λ_2 , and so we can take

$$
P = (u_1, u_2) = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}.
$$

Next let $v_1 = \frac{Au_1}{\sigma_1} = \frac{1}{3\sqrt{10}} \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ 3 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{1}{3\sqrt{10}} \begin{pmatrix} 4 \\ 4 \\ 7 \\ 3 \end{pmatrix}$ and $v_2 = \frac{Au_2}{\sigma_2} = \frac{1}{\sqrt{15}} \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ 3 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \frac{1}{\sqrt{15}} \begin{pmatrix} 3 \\ -2 \\ -1 \\ 1 \end{pmatrix}$
then extend $\{v_1, v_2\}$ to an orthonormal basis $Y_1 = \{v_1, v_2, v_3\}$, v_4 by for \mathbf{R}^4 . We have

then extend $\{v_1, v_2\}$ to an orthonormal basis $\mathcal{V} = \{v_1, v_2, v_3, v_4\}$ for \mathbb{R}^4 . We have

$$
\begin{pmatrix} 4 & 4 & 7 & 3 \ 3 & -2 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 6 & 8 & 2 \ 3 & -2 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 6 & 8 & 2 \ 0 & 20 & 25 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 6 & 8 & 2 \ 0 & 1 & \frac{5}{4} & \frac{1}{4} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \ 0 & 1 & \frac{5}{4} & \frac{1}{4} \end{pmatrix}
$$

So the orthogonal complement of $\text{Span}\{v_1, v_2\}$ has basis $\{(2, 1, 0, -4)^t, (2, 5, -4, 0)^t\}$. We apply the Gram-Schmidt Procedure, replacing the second vector in the basis by

$$
\begin{pmatrix} 2 \\ 5 \\ -4 \\ 0 \end{pmatrix} - \frac{9}{21} \begin{pmatrix} 2 \\ 1 \\ 0 \\ -4 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 14 \\ 35 \\ -28 \\ 0 \end{pmatrix} - \begin{pmatrix} 6 \\ 3 \\ 0 \\ -12 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 8 \\ 32 \\ -28 \\ 12 \end{pmatrix} = \frac{4}{7} \begin{pmatrix} 2 \\ 8 \\ -7 \\ 3 \end{pmatrix},
$$

and then we normalize to obtain $v_3 = \frac{1}{\sqrt{21}} \begin{pmatrix} 2 \\ 1 \\ 0 \\ -4 \end{pmatrix}$ and $v_4 = \frac{1}{3\sqrt{14}} \begin{pmatrix} 2 \\ 8 \\ -7 \\ 3 \end{pmatrix}$. Thus we can take

$$
Q = (v_1, v_2, v_3, v_4) = \begin{pmatrix} \frac{4}{3\sqrt{10}} & \frac{3}{\sqrt{15}} & \frac{2}{\sqrt{21}} & \frac{2}{3\sqrt{14}} \\ \frac{4}{3\sqrt{10}} & \frac{-2}{\sqrt{15}} & \frac{1}{\sqrt{21}} & \frac{8}{3\sqrt{14}} \\ \frac{7}{3\sqrt{10}} & \frac{-2}{\sqrt{15}} & \frac{0}{\sqrt{21}} & \frac{-7}{3\sqrt{14}} \\ \frac{3}{3\sqrt{10}} & \frac{1}{\sqrt{15}} & \frac{-4}{\sqrt{21}} & \frac{3}{3\sqrt{14}} \end{pmatrix}.
$$

3: A matrix $A \in M_{n \times n}(\mathbb{C})$ is called Hermitian positive-definite when $A^* = A$ and the eigenvalues of A are all positive. Let H_n denote the set of Hermitian positive-definite matrices in $M_{n\times n}(\mathbf{C})$.

(a) Show that every element of H_n has a unique square root in H_n .

Solution: Let $A \in H_n$. Since $A = A^*$ we can unitarily diagonalize A. Choose a unitary matrix P so that $P^*AP = D = \text{diag}\{\lambda_1, \dots, \lambda_n\}$ with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n > 0$ (we know the eigenvalues of A are positive since $A \in H_n$). Let $E = \text{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$ and note that $E^2 = D$. Let $B = PEP^*$. Note positive since $A \in H_n$). Let $B = \text{diag}(V \wedge 1, \dots, V \wedge n)$ and note that $B = D$. Let $B = TL1$. Note
that $B \in H_n$ since $B^* = B$ and the eigenvalues of B are $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}$ which are positive. Also note that $B^2 = (PEP^*)^2 = PEP^*PEP^* = PEP^* = A$. Thus B is a square root of A in H_n .

It remains to show that this square root is unique. Suppose that $C \in H_n$ and $C^2 = A$. Since $C^* = C$ we can unitarily diagonalize C. Choose a unitary matrix Q so that $Q^*CQ = F = \text{diag}(\sigma_1, \dots, \sigma_n)$ with $\sigma_1 \geq \cdots \geq \sigma_n > 0$ (each $\sigma_i > 0$ since $C \in H_n$) and let v_1, \cdots, v_n be the columns of Q. For each i we have

$$
Au_i = C^2 u_i = C(Cu_i) = C(\sigma_i u_i) = \sigma_i C u_i = \sigma_i^2 u_i
$$

so the eigenvalues of C are the square roots of the eigenvalues of A and each eigenvector of C is also an eigenvector for A. It follows that $\sigma_i = \sqrt{\lambda_i}$ for each i, and that $\{v_1, \dots, v_n\}$ is both a basis of eigenvectors for C and a basis of eigenvectors for A, so the matrices C and A have the same eigenvectors. Similarly the above matrix B also has the same eigenvectors. It follows that the unitary matrix Q which we used to diagonalize C can also be used to diagonalize B . Thus we have

$$
Q^*CQ = \text{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n}) = Q^*BQ.
$$

Multiplying on the left by Q and on the right by Q^* gives $C = B$.

(b) Let $A \in H_n$. Show that if $A = Q \Sigma P^*$ is a singular value decomposition of A, then $Q = P$.

Solution: Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of A^*A , let $\sigma_i = \sqrt{\lambda_i}$ be the singular values of A, let $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n > 0$ be the eigenvalues of A, and let $\mathcal{U} = \{u_1, \dots, u_n\}$ be a corresponding basis of eigenvectors of A. Since A is Hermitian (that is $A^* = A$) and since $Au_i = \mu_i u_i$, we have

$$
A^*Au_i = AAu_i = A\mu_i u_i = \mu_i Au_i = \mu_i^2 u_i
$$

and so each μ_i^2 is an eigenvalue of A^*A with eigenvector u_i . Since A is positive semi-definite we must have $\mu_i = \sqrt{\lambda_i} = \sigma_i$, and so the eigenvalues of A are equal to the singular values of A, and A and A^{*}A have the same eigenvectors.

Let $A = Q \Sigma P^*$, with $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n) = \text{diag}(\mu_1, \dots, \mu_n)$, be a singular value decomposition of A. Let w_1, \dots, w_n be the columns of P and let $\mathcal{W} = \{w_1, \dots, w_n\}$. Recall that W is a basis of eigenvectors of A^*A . Since A and A^*A have the same eigenvectors, W is also a basis of eigenvectors of A, and so it diagonalizes A, that is $A = P\Sigma P^*$. Thus we have $A = Q\Sigma P^* = P\Sigma P^*$. Multiply on the right by P and then by $\Sigma^{-1} = \text{diag}\left(\frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_n}\right)$ to get $Q = P$.

- 4: Let $A \in M_{n \times n}(\mathbb{C})$. Let $\lambda_1, \lambda_2, \cdots, \lambda_n$ be the eigenvalues of A (listed with repetition according to algebraic multiplicity). Show that the following are equivalent.
	- 1. $AA^* = A^*A$.
	- 2. $A^* = f(A)$ for some polynomial f.
	- 3. $A^* = AP$ for some unitary matrix P.
	- 4. X i,j $\left|A_{i,j}\right|$ $2^2 = \sum$ i $|\lambda_i|^2$.

Solution: First we show that $1 \iff 2$. Suppose first that $A^*A = AA^*$. Choose a unitary matrix P so that $P^*AP = D = \text{diag}(\lambda_1, \dots, \lambda_1, \lambda_2, \dots, \lambda_2, \dots, \lambda_k, \dots, \lambda_k)$ where $\lambda_1, \dots, \lambda_k$ are the distinct eigenvalues of A. Note that $A = P D P^*$, $A^* = P D^* P^*$ and $D^* = \overline{D}$. Let f be the unique polynomial of degree at most $k-1$ such that $f(\lambda_i) = \overline{\lambda_i}$ for $i = 1, 2, \dots, k$. Note that $f(D) = \overline{D}$, so we have

$$
f(A) = f(PDP^*) = Pf(D)P^* = P\overline{D}P^* = PD^*P^* = A^*
$$

.

Conversely, for any square matrix A and any polynomial f , it is clear that A commutes with $f(A)$ (indeed if $f(x) = \sum c_k x^k$ then we have $Af(A) = \sum c_k A^{k+1} = f(A)A$, so if $A^* = f(A)$ then A commutes with A^* . Next we show that $1 \iff 3$. Suppose first that $AA^* = A^*A$. Choose a unitary matrix Q so that

 $Q^*AQ = D = \text{diag}(\lambda_1, \dots, \lambda_n)$ where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of A (listed with repetition according to multiplicity). Note that $A = QDQ^*$ and $A^* = QD^*Q^*$. Let $E = \text{diag}(\frac{\lambda_1}{\lambda_1}, \dots, \frac{\lambda_n}{\lambda_n})$. Note that E is unitary and $DE = diag(\overline{\lambda}_1, \dots, \overline{\lambda}_n) = D^*$. Let $P = QEQ^*$. Then P is unitary and

$$
AP = QDQ^*QEQ^* = QDEQ^* = QD^*Q^* = A^*.
$$

Conversely, if $A^* = AP$ where P is unitary, then $A^*A = A^*A^{**} = (AP)(AP)^* = APP^*A^* = AA^*$.

Finally we show that $1 \iff 4$. Suppose first that $AA^* = A^*A$. Choose a unitary matrix P so that $P^*AP = D = \text{diag}(\lambda_1, \dots, \lambda_n)$. Recall that similar matrices have the same trace (since they have the same eigenvalues and the trace of a square matrix is the sum of its eigenvalues). Note that A^*A is similar to D^*D since $D^*D = PA^*P^*PAP^* = PA^*AP^*$. Using the standard inner product $\langle A, B \rangle = \text{trace}(B^*A)$, we have

$$
\sum_{i,j} |A_{i,j}|^2 = |A|^2 = \text{trace}(A^*A) = \text{trace}(D^*D) = |D|^2 = \sum_i |\lambda_i|^2.
$$

Conversely, suppose that $A^*A \neq AA^*$. Choose a unitary matrix P so that $P^*AP = T$ is upper triangular with diagonal entries $T_{i,i} = \lambda_i$. Since $A^*A \neq AA^*$, we know that T is not diagonal, so we have $T_{k,l} \neq 0$ for some $k < l$. Then

$$
\sum_{i,j} |A_{i,j}|^2 = |A|^2 = |T|^2 = \sum_{i \le j} |T_{i,j}|^2 \ge |T_{k,l}|^2 + \sum_i |T_{i,i}|^2 = |T_{k,l}|^2 + \sum_i |\lambda_i|^2 > \sum_i |\lambda_i|^2.
$$

5: Let $A \in O(3, \mathbf{R})$ and let $L : \mathbf{R}^3 \to \mathbf{R}^3$ be the associated linear map given by $L(x) = Ax$. Show that L is either a rotation, a reflection in some 2-dimensional subspace of \mathbb{R}^3 , or a rotary inversion (that is a map of the form $-R$ where R is a rotation).

Solution: Either the eigenvalues of A are all real or A has one real eigenvalue and a pair of conjugate eigenvalues. Suppose first that the eigenvalues of A are all real. Since $A^*A = A^tA = I$ and the eigenvalues of A are real, A is orthogonally diagonalizable over **R** and its eigenvalues all have length 1. Let $\lambda_1 \geq \lambda_2 \geq \lambda_3$ with $\lambda_i = \pm 1$ be the eigenvalues of A. Let $\mathcal{U} = \{u_1, u_2, u_3\}$ be an orthonormal basis of corresponding eigenvectors and let $P = (u_1, u_2, u_2)$ so that we have

$$
[L]_{\mathcal{U}} = P^t A P = \text{diag}(\lambda_1, \lambda_2, \lambda_3).
$$

When $\lambda_1 = \lambda_2 = \lambda_3 = 1$ we have $L = I = R_{u_1,0}$. When $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = -1$ we have $L = \text{Refl}_{E_1}$ where $E_1 = \text{Span}\{u_1, u_2\}$. When $\lambda_1 = 1$ and $\lambda_2 = \lambda_3 = -1$ we have $L = \mathbf{R}_{u_1, \pi}$. When $\lambda_1 = \lambda_2 = \lambda_3 = -1$ we have $L = -I = -R_{u_1,0}$.

Now suppose that A has one real eigenvalue λ and a pair of conjugate eigenvalues $\mu = a + ib$ and $\overline{\mu} = a - ib$. Since $A^*A = A^tA = I$ we know that A is unitarily diagonalizable over **C** and its eigenvalues all have length 1. Since $|\lambda| = 1$ we have $\lambda = \pm 1$ and since $|\mu| = |a + ib| = 1$ we have $\mu = e^{i\theta}$, that is $a = \cos \theta$ and $b = \sin \theta$, for some angle θ . By following our usual procedure for finding an orthonormal basis of eigenvectors, we can find an orthonormal basis

$$
\mathcal{V} = \{u, w, \overline{w}\}\
$$

for \mathbb{C}^3 where $u \in \mathbb{R}^3$ is a real unit eigenvector for the real eigenvalue λ and $w = x + iy$, with $x, y \in \mathbb{R}^3$, is a complex unit eigenvector for the complex eigenvalue μ . In this basis we have $[L]_{\mathcal{V}} = \text{diag}(\lambda, w, \overline{w})$. As in question 3 of assignment 4, but with an additional scaling factor, we let

$$
\mathcal{U} = \left\{ u, \sqrt{2} x, \sqrt{2} y \right\}.
$$

We claim that U is an orthonormal basis for \mathbb{R}^3 . We use the fact that V is an orthonormal basis for \mathbb{C}^3 . We have $|u|=1$ and we have $|w|=1$ so that $|x|^2+|y|^2=|w|^2=1$. Since $\langle u, w \rangle = 0$ we have

$$
0 = \langle u, w \rangle = \langle u, x + i y \rangle = \langle u, x \rangle - i \langle u, y \rangle = (u \cdot x) - i (u \cdot y)
$$

 $0 = \langle u, w \rangle = \langle u, x + iy \rangle = \langle$
and so $u \cdot x = u \cdot y = 0$. Since $\langle w, \overline{w} \rangle = 0$ we have

 $0 = \langle w, \overline{w} \rangle = \langle x + i y, x - i y \rangle = \langle x, x \rangle + i \langle x, y \rangle + i \langle y, x \rangle - \langle y, y \rangle = (|x|^2 - |y|^2) + i(2(x \cdot y))$ and so $|x|^2 = |y|^2$ and $x \cdot y = 0$. Finally, since $|x|^2 = |y|^2$ and $|x|^2 = |y|^2$ we have $|x| = |y| = \frac{1}{2}$ so that $|\sqrt{2}x| = |\sqrt{2}y| = 1$. Thus U is an orthonormal basis for \mathbb{R}^3 , as claimed.

Note that (as we saw in question 3 of assignment 4), since $Au = \lambda u$ and $Aw = \mu w$ so that

$$
A(x + iy) = (a + i b)(x + iy)
$$

\n
$$
Ax + i Ay = (ax - by) + i (bx + ay)
$$

\n
$$
Ax = ax - by , Ay = bx + ay
$$

we have

$$
\begin{bmatrix} L \end{bmatrix}_{\mathcal{U}} = \begin{pmatrix} \lambda & b \\ -b & a \end{pmatrix} = \begin{pmatrix} \pm 1 & \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \pm 1 & \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}.
$$

When $\lambda = 1$ this is a rotation and when $\lambda = -1$ it is a rotary inversion.

We remark that, as in question 1(b) of Assignment 4, some care is required in determining u and ϕ such that $L = \pm R_{u,\phi}$. These depend in part on whether the basis U is positively or negatively oriented. When U is positively oriented, if $\lambda = 1$ then we can take $u = u_1$ and $\phi = -\theta$ to get $L = R_{u,\phi}$, and if $\lambda = -1$ then we can take $u = u_1$ and $\phi = \pi - \theta$ to get $L = -R_{u,\phi}$.