
MATH 245 Linear Algebra 2, Solutions to Assignment 5

1: (a) Let A =

 3 2 −4
2 0 −2
−4 −2 3

. Find an orthogonal matrix P and a diagonal matrix D such that P tAP = D.

Solution: The characteristic polynomial of A is

fA(t) =

∣∣∣∣∣∣
3− t 2 −4

2 −t −2
−4 −2 3− t

∣∣∣∣∣∣
= −t(t3 − 6t+ 9) + 16 + 16− 4(3− t)− 4(3− t) + 16t

= −(t3 − 6t2 − 15t− 8) = −(t+ 1)(t2 − 7t− 8) = −(t+ 1)2(t− 8)
so the eigenvalues are λ1 = 8 and λ2 = λ3 = −1. When λ = λ1 = 8 we have

A− λI =

−5 2 −4
2 −8 −2
−4 −2 −5

 ∼
 1 −4 −1

2 −8 −2
−4 −2 −5

 ∼
 1 −4 −1

0 0 0
0 −18 −9

 ∼
 1 −4 −1

0 1 1
2

0 0 0

 ∼
 1 0 1

0 1 1
2

0 0 0


so we can take v1 =

 2
1
−2

 so that {v1} is a basis for the eigenspace E8, then let u1 =
v1
|v1|

= 1
3

 2
1
−2

. Since

A is symmetric, we know that its eigenspaces are orthogonal so we have E−1 = E8
⊥. To find a basis for E−1

we can, by inspection, choose a unit vector u2 which is orthogonal to u1 and then choose u3 = u1 × u2. We

choose u2 = 1√
2

 1
0
1

 and u3 = 1
3
√

2

 2
1
−2

×
 1

0
1

 = 1
3
√

2

 1
−4
−1

 . Thus we can orthogonally diagonalize A

using P =
(
u1, u2, u3

)
=


2
3

1√
2

1
3
√

2
1
3 0 − 4

3
√

2

− 2
3

1√
2
− 1

3
√

2

 and D = diag(λ1, λ2, λ3) =

 8 0 0
0 −1 0
0 0 −1

.



(b) Let A =
(

2 + i 1 + i
i 3 + i

)
. Find a unitary matrix P and an upper-triangular matrix T so that P ∗AP = T .

Solution: The characteristic polynomial of A is

fA(t) =
∣∣∣∣ (2 + i)− t 1 + i

i (3 + i)− t

∣∣∣∣
= t2 − (5 + 2i) t+ (5 + 5i)− (−1 + i) = t2 − (5 + 2i) t+ (6 + 4i)

The eigenvalues are

λ =
(5 + 2i)±

√
(21 + 20 i)− (24 + 16 i)

2
=

(5 + 2i)±
√
−3 + 4 i

2
=

(5 + 2i)± (1 + 2i)
2

= 3 + 2i , 2,

say λ1 = 2 and λ2 = 3 + 2i. When λ = λ1 = 2 we have

A− λI =
(
i 1 + i
i 1 + i

)
∼
(

1 1− i
0 0

)
so we can take v1 =

(
−1 + i

1

)
so that {v1} is a basis for Eλ1 . By inspection, the vector v2 =

(
1

1 + i

)
is

orthogonal to v1. Normalize these vectors to get u1 =
v1
|v1|

= 1√
3

(
−1 + i

1

)
and u2 =

v2
|v2|

= 1√
3

(
1

1 + i

)
so that {u1, u2} is an orthonormal basis for C2. Thus we can take

P =
(
u1, u2

)
= 1√

3

(
−1 + i 1

1 1 + i

)
, and

T = P ∗AP = 1
3

(
−1− i 1

1 1− i

)(
2 + i 1 + i
i 3 + i

)(
−1 + i 1

1 1 + i

)
= 1

3

(
−1− i 1

1 1− i

)(
−2 + 2i 2 + 3i

2 2 + 5i

)
= 1

3

(
6 3
0 9 + 6i

)
=
(

2 1
0 3 + 2i

)
.



2: Find a singular value decomposition A = QΣP ∗ for the matrix A =


1 2
2 0
3 1
1 1

.

Solution: We have

A∗A =
(

1 2 3 1
2 0 1 1

)
1 2
2 0
3 1
1 1

 =
(

15 6
6 6

)
.

The characteristic polynomial of A∗A is

fA∗A(t) =
∣∣A∗A− tI∣∣ =

∣∣∣∣ 15− t 6
6 6− t

∣∣∣∣ = t2 − 21t+ 54 = (t− 3)(t− 18)

so the eigenvalues of A∗A are λ1 = 18, λ2 = 3, and hence the singular values of A are σ1 = 3
√

2, σ2 =
√

3,
so we can take

Σ =


σ1 0
0 σ2

0 0
0 0

 =


3
√

2 0
0

√
3

0 0
0 0

 .

When λ = λ1 = 18 we have

A∗A− λI =
(
−3 6

6 −12

)
∼
(
−1 2

0 0

)
so u1 = 1√

5

(
2
1

)
is a unit eigenvector for λ1. The eigenspace for λ2 is orthogonal so u2 = 1√

5

(
−1

2

)
is a unit

eigenvector for λ2, and so we can take

P =
(
u1, u2

)
=

(
2√
5
− 1√

5
1√
5

2√
5

)
.

Next let v1 = Au1
σ1

= 1
3
√

10


1 2
2 0
3 1
1 1

( 2
1

)
= 1

3
√

10


4
4
7
3

 and v2 = Au2
σ2

= 1√
15


1 2
2 0
3 1
1 1

(−1
2

)
= 1√

15


3
−2
−1

1


then extend {v1, v2} to an orthonormal basis V = {v1, v2, v3, v4} for R4. We have(

4 4 7 3
3 −2 −1 1

)
∼
(

1 6 8 2
3 −2 −1 1

)
∼
(

1 6 8 2
0 20 25 5

)
∼
(

1 6 8 2
0 1 5

4
1
4

)
∼
(

1 0 1
2

1
2

0 1 5
4

1
4

)
So the orthogonal complement of Span{v1, v2} has basis

{
(2, 1, 0,−4)t, (2, 5,−4, 0)t

}
. We apply the Gram-

Schmidt Procedure, replacing the second vector in the basis by
2
5
−4

0

− 9
21


2
1
0
−4

 =
1
7




14
35
−28

0

−


6
3
0
−12


 =

1
7


8
32
−28

12

 =
4
7


2
8
−7

3

 ,

and then we normalize to obtain v3 = 1√
21


2
1
0
−4

 and v4 = 1
3
√

14


2
8
−7

3

. Thus we can take

Q =
(
v1, v2, v3, v4

)
=


4

3
√

10
3√
15

2√
21

2
3
√

14
4

3
√

10
−2√
15

1√
21

8
3
√

14
7

3
√

10
−2√
15

0√
21

−7
3
√

14
3

3
√

10
1√
15

−4√
21

3
3
√

14

 .



3: A matrix A ∈ Mn×n(C) is called Hermitian positive-definite when A∗ = A and the eigenvalues of A are all
positive. Let Hn denote the set of Hermitian positive-definite matrices in Mn×n(C).

(a) Show that every element of Hn has a unique square root in Hn.

Solution: Let A ∈ Hn. Since A = A∗ we can unitarily diagonalize A. Choose a unitary matrix P so
that P ∗AP = D = diag{λ1, · · · , λn} with λ1 ≥ λ2 ≥ · · · ≥ λn > 0 (we know the eigenvalues of A are
positive since A ∈ Hn). Let E = diag

(√
λ1, · · · ,

√
λn
)

and note that E2 = D. Let B = PEP ∗. Note
that B ∈ Hn since B∗ = B and the eigenvalues of B are

√
λ1, · · · ,

√
λn which are positive. Also note that

B2 = (PEP ∗)2 = PEP ∗PEP ∗ = PEP ∗ = A. Thus B is a square root of A in Hn.
It remains to show that this square root is unique. Suppose that C ∈ Hn and C2 = A. Since C∗ = C

we can unitarily diagonalize C. Choose a unitary matrix Q so that Q∗CQ = F = diag
(
σ1, · · · , σn

)
with

σ1 ≥ · · · ≥ σn > 0 (each σi > 0 since C ∈ Hn) and let v1, · · · , vn be the columns of Q. For each i we have

Aui = C2ui = C(Cui) = C(σiui) = σiCui = σi
2ui

so the eigenvalues of C are the square roots of the eigenvalues of A and each eigenvector of C is also an
eigenvector for A. It follows that σi =

√
λi for each i, and that {v1, · · · , vn} is both a basis of eigenvectors

for C and a basis of eigenvectors for A, so the matrices C and A have the same eigenvectors. Similarly
the above matrix B also has the same eigenvectors. It follows that the unitary matrix Q which we used to
diagonalize C can also be used to diagonalize B. Thus we have

Q∗CQ = diag(
√
λ1, · · · ,

√
λn
)

= Q∗BQ .

Multiplying on the left by Q and on the right by Q∗ gives C = B.

(b) Let A ∈ Hn. Show that if A = QΣP ∗ is a singular value decomposition of A, then Q = P .

Solution: Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A∗A, let σi =
√
λi be the singular values of A,

let µ1 ≥ µ2 ≥ · · · ≥ µn > 0 be the eigenvalues of A, and let U = {u1, · · · , un} be a corresponding basis of
eigenvectors of A. Since A is Hermitian (that is A∗ = A) and since Aui = µiui, we have

A∗Aui = AAui = Aµiui = µiAui = µi
2ui

and so each µi
2 is an eigenvalue of A∗A with eigenvector ui. Since A is positive semi-definite we must have

µi =
√
λi = σi, and so the eigenvalues of A are equal to the singular values of A, and A and A∗A have the

same eigenvectors.
Let A = QΣP ∗, with Σ = diag(σ1, · · · , σn) = diag(µ1, · · · , µn), be a singular value decomposition of A.

Let w1, · · · , wn be the columns of P and let W = {w1, · · · , wn}. Recall that W is a basis of eigenvectors
of A∗A. Since A and A∗A have the same eigenvectors, W is also a basis of eigenvectors of A, and so it
diagonalizes A, that is A = PΣP ∗. Thus we have A = QΣP ∗ = PΣP ∗. Multiply on the right by P and
then by Σ−1 = diag

(
1
σ1
, · · · , 1

σn

)
to get Q = P .



4: Let A ∈ Mn×n(C). Let λ1, λ2, · · · , λn be the eigenvalues of A (listed with repetition according to algebraic
multiplicity). Show that the following are equivalent.
1. AA∗ = A∗A.
2. A∗ = f(A) for some polynomial f .
3. A∗ = AP for some unitary matrix P .
4.
∑
i,j

∣∣Ai,j∣∣2 =
∑
i

|λi|2.

Solution: First we show that 1 ⇐⇒ 2. Suppose first that A∗A = AA∗. Choose a unitary matrix P so that
P ∗AP = D = diag

(
λ1, · · · , λ1, λ2, · · · , λ2, · · · , λk, · · · , λk

)
where λ1, · · · , λk are the distinct eigenvalues of A.

Note that A = P DP ∗, A∗ = P D∗P ∗ and D∗ = D. Let f be the unique polynomial of degree at most k− 1
such that f(λi) = λi for i = 1, 2, · · · , k. Note that f(D) = D, so we have

f(A) = f(PDP ∗) = Pf(D)P ∗ = P DP ∗ = PD∗P ∗ = A∗ .

Conversely, for any square matrix A and any polynomial f , it is clear that A commutes with f(A)
(
indeed

if f(x) =
∑
ckx

k then we have Af(A) =
∑
ckA

k+1 = f(A)A
)
, so if A∗ = f(A) then A commutes with A∗.

Next we show that 1 ⇐⇒ 3. Suppose first that AA∗ = A∗A. Choose a unitary matrix Q so that
Q∗AQ = D = diag(λ1, · · · , λn) where λ1, · · · , λn are the eigenvalues of A (listed with repetition according to
multiplicity). Note that A = QDQ∗ and A∗ = QD∗Q∗. Let E = diag

(
λ1
λ1
, · · · , λn

λn

)
. Note that E is unitary

and DE = diag(λ1, · · · , λn) = D∗. Let P = QEQ∗. Then P is unitary and

AP = QDQ∗QEQ∗ = QDEQ∗ = QD∗Q∗ = A∗ .

Conversely, if A∗ = AP where P is unitary, then A∗A = A∗A∗∗ = (AP )(AP )∗ = APP ∗A∗ = AA∗.
Finally we show that 1 ⇐⇒ 4. Suppose first that AA∗ = A∗A. Choose a unitary matrix P so that

P ∗AP = D = diag(λ1, · · · , λn). Recall that similar matrices have the same trace (since they have the same
eigenvalues and the trace of a square matrix is the sum of its eigenvalues). Note that A∗A is similar to D∗D
since D∗D = PA∗P ∗PAP ∗ = PA∗AP ∗. Using the standard inner product 〈A,B〉 = trace(B∗A), we have∑

i,j

|Ai,j |2 = |A|2 = trace(A∗A) = trace(D∗D) = |D|2 =
∑
i

|λi|2 .

Conversely, suppose that A∗A 6= AA∗. Choose a unitary matrix P so that P ∗AP = T is upper triangular
with diagonal entries Ti,i = λi. Since A∗A 6= AA∗, we know that T is not diagonal, so we have Tk,l 6= 0 for
some k < l. Then∑

i,j

|Ai,j |2 = |A|2 = |T |2 =
∑
i≤j

|Ti,j |2 ≥ |Tk,l|2 +
∑
i

|Ti,i|2 = |Tk,l|2 +
∑
i

|λi|2 >
∑
i

|λi|2 .



5: Let A ∈ O(3,R) and let L : R3 → R3 be the associated linear map given by L(x) = Ax. Show that L is
either a rotation, a reflection in some 2-dimensional subspace of R3, or a rotary inversion (that is a map of
the form −R where R is a rotation).

Solution: Either the eigenvalues of A are all real or A has one real eigenvalue and a pair of conjugate
eigenvalues. Suppose first that the eigenvalues of A are all real. Since A∗A = AtA = I and the eigenvalues
of A are real, A is orthogonally diagonalizable over R and its eigenvalues all have length 1. Let λ1 ≥ λ2 ≥ λ3

with λi = ±1 be the eigenvalues of A. Let U = {u1, u2, u3} be an orthonormal basis of corresponding
eigenvectors and let P =

(
u1, u2, u2

)
so that we have[
L
]
U = P tAP = diag

(
λ1, λ2, λ3

)
.

When λ1 = λ2 = λ3 = 1 we have L = I = Ru1,0. When λ1 = λ2 = 1 and λ3 = −1 we have L = Refl
E1

where E1 = Span{u1, u2}. When λ1 = 1 and λ2 = λ3 = −1 we have L = Ru1,π. When λ1 = λ2 = λ3 = −1
we have L = −I = −Ru1,0.

Now suppose that A has one real eigenvalue λ and a pair of conjugate eigenvalues µ = a + ib and
µ = a − ib. Since A∗A = AtA = I we know that A is unitarily diagonalizable over C and its eigenvalues
all have length 1. Since |λ| = 1 we have λ = ±1 and since |µ| = |a + ib| = 1 we have µ = ei θ, that is
a = cos θ and b = sin θ, for some angle θ. By following our usual procedure for finding an orthonormal basis
of eigenvectors, we can find an orthonormal basis

V = {u,w,w}
for C3 where u ∈ R3 is a real unit eigenvector for the real eigenvalue λ and w = x+ i y, with x, y ∈ R3, is
a complex unit eigenvector for the complex eigenvalue µ. In this basis we have

[
L
]
V = diag

(
λ,w,w

)
. As in

question 3 of assignment 4, but with an additional scaling factor, we let

U =
{
u,
√

2x,
√

2 y
}
.

We claim that U is an orthonormal basis for R3. We use the fact that V is an orthonormal basis for C3. We
have |u| = 1 and we have |w| = 1 so that |x|2 + |y|2 = |w|2 = 1. Since 〈u,w〉 = 0 we have

0 = 〈u,w〉 = 〈u, x+ i y〉 = 〈u, x〉 − i 〈u, y〉 = (u.x)− i (u. y)
and so u.x = u. y = 0. Since 〈w,w〉 = 0 we have

0 = 〈w,w〉 = 〈x+ i y, x− i y〉 = 〈x, x〉+ i 〈x, y〉+ i 〈y, x〉 − 〈y, y〉 =
(
|x|2 − |y|2

)
+ i
(
2(x. y)

)
and so |x|2 = |y|2 and x. y = 0. Finally, since |x|2 = |y|2 and |x|2 = |y|2 we have |x| = |y| = 1

2 so that
|
√

2x| = |
√

2 y| = 1. Thus U is an orthonormal basis for R3, as claimed.
Note that (as we saw in question 3 of assignment 4), since Au = λu and Aw = µw so that

A(x+ i y) = (a+ i b)(x+ i y)
Ax+ i Ay = (ax− by) + i (bx+ ay)
Ax = ax− by , Ay = bx+ ay

we have [
L
]
U =

λ
a b
−b a

 =

±1
cos θ sin θ
− sin θ cos θ

 =

±1
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

 .

When λ = 1 this is a rotation and when λ = −1 it is a rotary inversion.
We remark that, as in question 1(b) of Assignment 4, some care is required in determining u and φ such

that L = ±Ru,φ. These depend in part on whether the basis U is positively or negatively oriented. When U
is positively oriented, if λ = 1 then we can take u = u1 and φ = −θ to get L = Ru,φ, and if λ = −1 then we
can take u = u1 and φ = π − θ to get L = −Ru,φ.


