MATH 245 Linear Algebra 2, Solutions to Assignment 5

3 2 -4
:(a)Let A=| 2 0 —2 |. Find an orthogonal matrix P and a diagonal matrix D such that P'AP = D.
—4 -2 3

Solution: The characteristic polynomial of A is

3—t 2 -4
fa(t) = 2 -t =2
-4 -2 3-t

= —t(t* —6t+9)+16+16 —4(3 —t) —4(3 —t) + 16t

=—(t*—6t2— 15t —8) = —(t+ 1)(#* =Tt —8) = —(t + 1)%(t — 8)
so the eigenvalues are Ay = 8 and Ay = A3 = —1. When A = Ay = 8 we have

~5 2 —4 1 -4 -1 1 -4 -1 1 -4 —1 1 0 1
A-X=|2-8-2]|~|2-8-2|~[0 0 0)]~]0 1 F]|~|0 1 3
—4 —2 -5 —4 —2 —5 0 —18 —9 0 0 O 0 0 O
2 v 2

so we can take vy = [ 1 | so that {v1} is a basis for the eigenspace Fg, then let u; = |—1| = % 1 |. Since
—2 U1 —2

A is symmetric, we know that its eigenspaces are orthogonal so we have E_; = Es®. To find a basis for E_,
we can, by inspection, choose a unit vector us which is orthogonal to u; and then choose uz = uy x us. We

1 2 1 1
choose ug = % 0 | and ug = 31 s L] x|0]= ﬁ —4 | . Thus we can orthogonally diagonalize A
1 —2 1 —1
2 1 1
3 V2 32 8§ 0 O
using P = (u1, u2,u3) = £ 0 —ﬁ and D = diag(A1, A2, A3) = 0 =1 0
2 1L 1 0 0 —1
3 v2 3V2
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Solution: The characteristic polynomial of A is
24+i)—t 1+

_|(
fA(t)—‘ i (Bti)—t
=12 — (54 2i)t+ (5+5i) — (=1 +4) =t* — (5+ 2i) t + (6 + 44)

(b) Let A = (2 —;— ¢l ) . Find a unitary matrix P and an upper-triangular matrix 7" so that P*AP = T.

The eigenvalues are

5= (5+2i)i\/(21+20i)—(24+16i) _ (5+2))+v-3+4i (54 2i) £ (14 24)
N 2 N 2 N 2
say A1 =2 and Ay = 3+ 2i. When A = A\ = 2 we have

(i 1+ 11—
A_)J_<z' 1+i> (0 0)

=3+2i,2,

—1+4+1 . . . . 1 .
so we can take vy = ( 1+ Z) so that {v1} is a basis for E),. By inspection, the vector ve = (1 " z) is
. v 142 v 1
orthogonal to v;. Normalize these vectors to get u; = |v71| = % ( 1+ Z) and uy = ﬁ = % (1 +i)

so that {u1,us} is an orthonormal basis for C?. Thus we can take
-1+ 1
— - L
P—(UI,'U,Q)—\/g( 1 1+i> , and
—-1—-3 1 241 1414 -1+ 1
—_ p* 1
T=PAP=3 1 1—@')( i 3+i)< 1 1+i>
1

—1—i 242 243\ _ (6 3 \_[(2 1
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2: Find a singular value decomposition A = QX P* for the matrix A = 3 (1)
1 1
Solution: We have
1 2
4. (1 2 3 1 2 0) (15 6
AA_(Z 0 1 1) 3 1 _<6 6)'
1 1
The characteristic polynomial of A*A is
Faca(t) = [A*A—tI| = ’ 156_t ; O | =f a1t 451=(t-3)¢-18)

so the eigenvalues of A*A are \; = 18, Ay = 3, and hence the singular values of A are o1 = 3v/2, 03 = V/3,
so we can take

o1 0 3v2 0
s |0 o2 _ 0 V3

0 0 0 0

0 0 0 0

When A = A\; = 18 we have
« (-3 6 ~1 2
AA_M_(G—IQ)N<O 0)

2 —1
. _ 1 . . . . . . _ 1 ‘o .
SO Uy = = <1> is a unit eigenvector for A\;. The eigenspace for A\ is orthogonal so us = 7 ( 9 ) is a unit
eigenvector for Ao, and so we can take

2 1
Pz(ul,u2): <\{§ \2/5>

V5 VB
1 2 4 1 2 3
2 0 2 4 2 0 —1 —2
_ Auy __ 1 _ 1 _ Aus _ 1 _ 1
Nex‘cletul_011_73\/E 3 1 (1>_3\/ﬁ - andvg_%z_\/? 3 1 (2>_\/ﬁ_1
1 1 3 1 1

then extend {v1,v2} to an orthonormal basis V = {vy, va, v3,v4} for R*. We have

4 4 7 3 1 6 8 2 1 6 8 2 16 8 2 1o 3
3-2-11 3-2-1 1 0 20 25 5 01 3 1 01 3

So the orthogonal complement of Span{vy,v2} has basis {(2, 1,0,—4)%, (2,5, —4,0)t}. We apply the Gram-
Schmidt Procedure, replacing the second vector in the basis by

N NI
v

2 2 14 6 8 2
51 9 (1}_1 3B | 3 132 _4(8
—4 21 {0 71| |-28 0 7128 7|71
0 4 0 12 12 3
2 2
and then we normalize to obtain vz = \/% é and vg = ﬁ _87 . Thus we can take
4 3
4 3 2 @ _2
3v/10 V15 V21 3V/14
4 =2 _1 _8
Q= (Ul,vz,vz‘a,m) = 3@ \[125 \/027 3\,/?4
3V10 V15 V21 314
3 1 —4 3
3V10 V15 V21 3V/14



3: A matrix A € M, «x,(C) is called Hermitian positive-definite when A* = A and the eigenvalues of A are all
positive. Let H,, denote the set of Hermitian positive-definite matrices in M, x,(C).

(a) Show that every element of H,, has a unique square root in H,.

Solution: Let A € H,. Since A = A* we can unitarily diagonalize A. Choose a unitary matrix P so
that P*AP = D = diag{\1, -+, An} with Ay > Ay > -+ > A\, > 0 (we know the eigenvalues of A are
positive since A € H,). Let E = diag(v/A1,+,vA,) and note that E*> = D. Let B = PEP*. Note
that B € H,, since B* = B and the eigenvalues of B are v/A1,---,v/A, which are positive. Also note that
B? = (PEP*)? = PEP*PEP* = PEP* = A. Thus B is a square root of A in H,.

It remains to show that this square root is unique. Suppose that C' € H, and C? = A. Since C* = C
we can unitarily diagonalize C'. Choose a unitary matrix @ so that Q*CQ = F = diag(ol, - ',O'n) with
o1 > >0, >0 (each o; > 0 since C € H,) and let vy, - - -, v, be the columns of Q). For each i we have

Aui = C2ui = C’(C’ul) = C(aiuz) = aiCui = UiQUi
so the eigenvalues of C' are the square roots of the eigenvalues of A and each eigenvector of C' is also an
eigenvector for A. It follows that o; = v/\; for each 4, and that {v1,---,v,} is both a basis of eigenvectors
for C' and a basis of eigenvectors for A, so the matrices C' and A have the same eigenvectors. Similarly
the above matrix B also has the same eigenvectors. It follows that the unitary matrix ¢ which we used to
diagonalize C' can also be used to diagonalize B. Thus we have

Q*CQ = diag(v/A1,- -, V) = Q"BQ.
Multiplying on the left by @ and on the right by @* gives C' = B.

(b) Let A € H,,. Show that if A = QXP* is a singular value decomposition of A, then @ = P.

Solution: Let Ay > Ay > --- > )\, be the eigenvalues of A*A, let 0; = +/A; be the singular values of A,
let pp > po > -+ > pp > 0 be the eigenvalues of A, and let U = {uy,---,u,} be a corresponding basis of
eigenvectors of A. Since A is Hermitian (that is A* = A) and since Au; = p,;u;, we have

A*Aui = AAUZ = Auiui = ,uiAui = ,ufui

and so each p;2 is an eigenvalue of A* A with eigenvector u;. Since A is positive semi-definite we must have
wi = V\i = 0, and so the eigenvalues of A are equal to the singular values of A, and A and A*A have the
same eigenvectors.

Let A = QXP*, with ¥ = diag(o1,---,0,) = diag(p1,- -+, tn), be a singular value decomposition of A.
Let wy,- -, w, be the columns of P and let W = {wy,---,w,}. Recall that W is a basis of eigenvectors
of A*A. Since A and A*A have the same eigenvectors, WV is also a basis of eigenvectors of A, and so it
diagonalizes A, that is A = PXP*. Thus we have A = QX P* = PXP*. Multiply on the right by P and
then by 71 = diag(a%, . é) to get Q = P.



4: Let A € M,xn(C). Let A1, Aa, -+, A, be the eigenvalues of A (listed with repetition according to algebraic
multiplicity). Show that the following are equivalent.
1. AA* = A*A.
2. A* = f(A) for some polynomial f.
3. A* = AP for some unitary matrix P.

4.3 A =S Il
ij i

Solution: First we show that 1 <= 2. Suppose first that A*A = A A*. Choose a unitary matrix P so that
P*AP =D = diag(x\l7 AL Aoy Aoy A, e, )\k) where \Aq, -+, A\, are the distinct eigenvalues of A.
Note that A = P DP*, A* = P D*P* and D* = D. Let f be the unique polynomial of degree at most k — 1
such that f(A\;) = A; for i =1,2,--- k. Note that f(D) = D, so we have
f(A) = f(PDP*) = Pf(D) P* = PD P* = PD*P* = A*.

Conversely, for any square matrix A and any polynomial f, it is clear that A commutes with f(A) (indeed
if f(z) =Y cpa® then we have Af(A) =3 ¢, A" = f(A)A ), so if A* = f(A) then A commutes with A*.

Next we show that 1 <= 3. Suppose first that A A* = A*A. Choose a unitary matrix @ so that
Q*AQ = D = diag(A1, -+, Ay) where A\q, - -+, A, are the eigenvalues of A (listed with repetition according to
multiplicity). Note that A = QDQ* and A* = QD*Q". Let E = diag(3*, -, 3%). Note that E is unitary
and DE = diag(\1,--+,A\n) = D*. Let P = QEQ*. Then P is unitary and

AP =QDQ"QEQ" = QDEQ* =QD*Q* = A*.
Conversely, if A* = AP where P is unitary, then A*A = A*A** = (AP)(AP)* = APP*A* = AA*.

Finally we show that 1 <= 4. Suppose first that AA* = A*A. Choose a unitary matrix P so that
P*AP = D = diag(\1, -+, An). Recall that similar matrices have the same trace (since they have the same
eigenvalues and the trace of a square matrix is the sum of its eigenvalues). Note that A* A is similar to D*D
since D*D = PA*P*PAP* = PA*AP*. Using the standard inner product (A, B) = trace(B*A), we have

> |4 1? = |A]? = trace(A” A) = trace(D*D) = [D|* = > |\

i i
Conversely, suppose that A*A # AA*. Choose a unitary matrix P so that P*AP = T is upper triangular
with diagonal entries T; ; = A;. Since A*A # AA*, we know that T is not diagonal, so we have T}, ; # 0 for

some k < [. Then

Do AP =1AP = TP =) (Tl 2 Tl + ) (Tl = 1Tl + DIl > DI
i 7 i

i<j i



5: Let A € O(3,R) and let L : R® — R? be the associated linear map given by L(z) = Az. Show that L is
either a rotation, a reflection in some 2-dimensional subspace of R?, or a rotary inversion (that is a map of
the form —R where R is a rotation).

Solution: Either the eigenvalues of A are all real or A has one real eigenvalue and a pair of conjugate
eigenvalues. Suppose first that the eigenvalues of A are all real. Since A*A = A*A = I and the eigenvalues
of A are real, A is orthogonally diagonalizable over R and its eigenvalues all have length 1. Let Ay > Ay > A3
with A; = £1 be the eigenvalues of A. Let U = {uy,uz2,us} be an orthonormal basis of corresponding
eigenvectors and let P = (ul, g, UQ) so that we have

[L]Z/l = PtAP = diag(/\l, )\2, )\3) .

When A\{ = XA = A3 =1wehave L =1 = R,, 0. When \; = Xy =1 and A3 = —1 we have L = ReﬂE1
where E7 = Span{us,uz}. When Ay =1 and Ay = A3 = —1 we have L = R, . When A\; = Ay = A3 = —1
we have L = —I = —R,,, .

Now suppose that A has one real eigenvalue A and a pair of conjugate eigenvalues p = a + ib and
T = a —ib. Since A*A = A'A = I we know that A is unitarily diagonalizable over C and its eigenvalues
all have length 1. Since |\| = 1 we have A\ = +1 and since |u| = |a + ib| = 1 we have u = €'?, that is
a = cosf and b = sin @, for some angle 6. By following our usual procedure for finding an orthonormal basis
of eigenvectors, we can find an orthonormal basis

V= {u,w,w}
for C? where u € R3 is a real unit eigenvector for the real eigenvalue A and w = x + iy, with ,y € R3, is

a complex unit eigenvector for the complex eigenvalue p. In this basis we have [L}V = diag()\, w,ﬁ). As in
question 3 of assignment 4, but with an additional scaling factor, we let

U= {u,\/ﬁm,\/iy}
We claim that ¢/ is an orthonormal basis for R3. We use the fact that V is an orthonormal basis for C2. We
have |u| = 1 and we have |w| = 1 so that |z|? + |y|?> = |w|?> = 1. Since (u,w) = 0 we have
0= (u,w) = (u,z+iy) = (u,x) —i(u,y) = (u+z) —i(u-y)
and so u+x =u+y =0. Since (w,w) = 0 we have
0= (w,w) = (z+iy,z—iy) = (w,z) +ile,y) +ily,z) — (y,9) = (|2 = [y*) +i(2(@ - y))
and so |z|> = |y|? and z « y = 0. Finally, since |z|?> = |y|? and |z|> = |y|? we have |z| = |y| =
|v2x| = |v/2y| = 1. Thus U is an orthonormal basis for R?, as claimed.
Note that (as we saw in question 3 of assignment 4), since Au = Au and Aw = pw so that
Az +iy) = (a+ib)(xz +iy)
Az +1i Ay = (ax — by) + i (bx + ay)
Ax =ax — by , Ay =bx + ay

% so that

we have
A +1 +1
[L]u = a b= cosf sinf | = cos(—0) —sin(—6)
-b a —sinf cosd sin(—0)  cos(—6)
When A =1 this is a rotation and when A = —1 it is a rotary inversion.

We remark that, as in question 1(b) of Assignment 4, some care is required in determining u and ¢ such
that L = £R, 4. These depend in part on whether the basis U/ is positively or negatively oriented. When U
is positively oriented, if A = 1 then we can take u = u; and ¢ = —6 to get L = R, 4, and if A = —1 then we
can take u =u; and ¢ =7 — 0 to get L = — Ry 4.



