MATH 245 Linear Algebra 2, Solutions to Assignment 6

1: (a) For the quadratic curve $7x^2 + 8xy + y^2 + 5 = 0$, find the coordinates of each vertex, find the equation of each asymptote, and sketch the curve.

Solution: Let $K(x,y) = 7x^2 + 8xy + y^2$. Note that $K(x,y) = \begin{pmatrix} x & y \end{pmatrix} A \begin{pmatrix} x \\ y \end{pmatrix}$ where $A = \begin{pmatrix} 7 & 4 \\ 4 & 1 \end{pmatrix}$. The characteristic polynomial of A is

$$|A - tI| = \begin{vmatrix} 7 - t & 4 \\ 4 & 1 - t \end{vmatrix} = t^2 - 8t - 9 = (t - 9)(t + 1)$$

so the eigenvalues are $\lambda_1 = 9$ and $\lambda_2 = -1$. For $\lambda = 9$ we have

$$A - \lambda I = \begin{pmatrix} -2 & 4\\ 4 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & -2\\ 0 & 0 \end{pmatrix}$$

so we can choose the unit eigenvector $u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\ 1 \end{pmatrix}$ for λ_1 . The other eigenspace will be orthogonal since A is symmetric, so we can choose the unit eigenvector $u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -1\\ 2 \end{pmatrix}$ for λ_2 . Let $P = (u_1, u_2) = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1\\ 1 & 2 \end{pmatrix}$ and let $D = \begin{pmatrix} 9 & 0\\ 0 & -1 \end{pmatrix}$. Then we have $P^*AP = D$. Write $\begin{pmatrix} x\\ y \end{pmatrix} = P \begin{pmatrix} s\\ t \end{pmatrix}$ or equivalently $\begin{pmatrix} s\\ t \end{pmatrix} = P^* \begin{pmatrix} x\\ y \end{pmatrix}$. Then

$$K(x,y) = \begin{pmatrix} x & y \end{pmatrix} A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} s & t \end{pmatrix} P^* A P \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} s & t \end{pmatrix} D \begin{pmatrix} s \\ t \end{pmatrix} = 9s^2 - t^2$$

and so

$$K(u,v) = -5 \iff 9s^2 - t^2 = -5 \iff \frac{t^2}{5} - \frac{s^2}{5/9} = 1$$

This is the hyperbola in the *st*-plane with vertices at $(0, \pm\sqrt{5})$ and asymptotes $t = \pm 3s$. We calculate the points (x, y) corresponding to $(s, t) = (0, \pm\sqrt{5})$ (the vertices) and $(s, t) = (\sqrt{5}, \pm 3\sqrt{5})$ (points on the asymptotes):

$$P\begin{pmatrix}0\\\pm\sqrt{5}\end{pmatrix} = \pm \begin{pmatrix}2 & -1\\1 & 2\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix} = \pm \begin{pmatrix}-1\\2\end{pmatrix}$$
$$P\begin{pmatrix}\sqrt{5}\\\pm3\sqrt{5}\end{pmatrix} = \begin{pmatrix}2 & -1\\1 & 2\end{pmatrix}\begin{pmatrix}1\\\pm3\end{pmatrix} = \begin{pmatrix}-1\\7\end{pmatrix}, \begin{pmatrix}5\\-5\end{pmatrix}$$

Thus the curve K(x, y) = -5 is a hyperbola with vertices at (x, y) = (-1, 2) and (1, -2) and asymptotes y = -x and y = -7x.

(b) For the real quadratic form $K(x, y, z) = 3x^2 + ay^2 + bz^2 - 6xy + 2xz - 4yz$, sketch the set of points (a, b)for which K is positive-definite.

Solution: We have $K(x, y, z) = (x \ y \ z) A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ where $A = \begin{pmatrix} 3 & -3 & 1 \\ -3 & a & -2 \\ 1 & -2 & b \end{pmatrix}$. Note that det $A^{1 \times 1} = \det(3) = 3$, det $A^{2 \times 2} = \det \begin{pmatrix} 3 & -3 \\ -3 & a \end{pmatrix} = 3a - 9$ and det $A^{3 \times 3} = \det A = 3ab + 6 + 6 - 12 - 9b - a = 3ab - 9b - a$. For K

to be positive-definite we need det $A^{2\times 2} > 0$, that is 3a - 9 > 0 so a > 3, and we need det $A^3 > 0$, that is 3ab - 9b - a > 0 or equivalently 3b(a - 3) > a. For a > 3 this gives $b > \frac{a}{3(a-3)} = \frac{1}{3} + \frac{1}{a-3}$. Thus the required set of points (a, b) lies above and to the right of the hyperbola $y = \frac{1}{3} + \frac{1}{a-3}$, a > 3.

2: Let U and V be non-trivial subspaces of \mathbb{R}^n with $U \cap V = \{0\}$. Recall that

angle
$$(U, V) = \min \{ \text{angle}(u, v) | 0 \neq u \in U, 0 \neq v \in V \}$$

(a) Show that angle $(U, V) = \cos^{-1}(\sigma)$ where σ is the largest singular value of the linear map $P: U \to V$ given by $P(x) = \operatorname{Proj}_{V}(x)$.

Solution: Recall from Assignment 1 that for fixed $0 \neq u \in \mathbf{R}^n$ we have $\min_{0 \neq v \in V} \operatorname{angle}(u, v) = \cos^{-1} \left| \operatorname{Proj}_V \frac{u}{|u|} \right|$. Thus we have

$$\begin{aligned} \operatorname{angle}\left(U,V\right) &= \min_{0 \neq u \in U} \min_{0 \neq v \in V} \operatorname{angle}\left(u,v\right) \\ &= \min_{0 \neq u \in U} \cos^{-1}\left(\left|\operatorname{Proj}_{V}\frac{u}{|u|}\right|\right) \\ &= \cos^{-1}\left(\max_{0 \neq u \in U}\left|\operatorname{Proj}_{V}\frac{u}{|u|}\right|\right) \\ &= \cos^{-1}\left(\max_{u \in U, |u|=1}\left|\operatorname{Proj}_{V}(u)\right|\right) \\ &= \cos^{-1}\left(\max_{u \in U, |u|=1}\left|P(u)\right|\right) \\ &= \cos^{-1}\sigma\end{aligned}$$

where σ is the largest singular value of P.

(b) Let
$$u_1 = \begin{pmatrix} 1\\ 1\\ -1\\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 2\\ 1\\ -1\\ 2 \end{pmatrix}$, $v_1 = \begin{pmatrix} 1\\ 1\\ 0\\ -1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2\\ 1\\ 1\\ 0 \end{pmatrix}$. Let $U = \text{Span}\{u_1, u_2\}$ and $V = \text{Span}\{v_1, v_2\}$. Find $\text{angle}(U, V)$.

Solution: To find the singular values of P we find the matrix of P^*P with respect to orthonormal bases. We apply the Gram-Schmidt Procedure to the basis $\{u_1, u-2\}$ to get

$$w_{1} = u_{1} = \begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix}, w_{2} = u_{2} - \frac{u_{2} \cdot w_{1}}{|w_{1}|^{2}} w_{1} = \begin{pmatrix} 2\\1\\-1\\2 \end{pmatrix} - \frac{6}{4} \begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix} = \frac{1}{2} \left(\begin{pmatrix} 4\\2\\-2\\4 \end{pmatrix} - \begin{pmatrix} 3\\3\\-3\\3 \end{pmatrix} \right) = \frac{1}{2} \begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix}$$

then we normalize to get the orthonormal basis $\mathcal{U} = \{x_1, x_2\}$ with

$$x_1 = \frac{w_1}{|w_1|} = \frac{1}{2} \begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix} , \ x_2 = \frac{w_2}{|w_2|} = \frac{1}{2} \begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix}$$

Next we apply the Gram-Schmidt Procedure to $\{v_1, v_2\}$ to get

$$z_1 = v_1 = \begin{pmatrix} 1\\1\\0\\-1 \end{pmatrix} , \ z_2 = v_2 - \frac{v_2 \cdot z_1}{|z_1|^2} \, z_1 = \begin{pmatrix} 2\\1\\1\\0 \end{pmatrix} - \frac{3}{3} \begin{pmatrix} 1\\1\\0\\-1 \end{pmatrix} = \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}$$

then we normalize to get the orthonormal basis $\mathcal{V} = \{y_1, y_2\}$ for V where

$$y_1 = \frac{z_1}{|z_1|^2} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\0\\-1 \end{pmatrix}$$
, $y_2 = \frac{z_2}{|z_2|^2} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}$.

Now let

$$A = [P]_{\mathcal{V}}^{\mathcal{U}} = \begin{pmatrix} x_1 \cdot y_1 & x_2 \cdot y_1 \\ x_1 \cdot y_2 & x_2 \cdot y_2 \end{pmatrix} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$$

Then

$$\begin{bmatrix} P^*P \end{bmatrix}_{\mathcal{V}}^{\mathcal{U}} = A^*A = \frac{1}{12} \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 2 & 2 \\ 2 & 10 \end{pmatrix} = \frac{1}{6} B , \text{ where } B = \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}$$

The characteristic polynomial of B is

$$|B - tI| = \begin{pmatrix} 1 - t & 1 \\ 1 & 5 - t \end{pmatrix} = t^2 - 6t + 4$$

so *B* has eigenvalues $\lambda = \frac{6\pm\sqrt{20}}{2} = 3\pm\sqrt{5}$. Since $A^*A = \frac{1}{6}B$, the eigenvalues of A^*A , or equivalently the eigenvalues of P^*P , are $\frac{3\pm\sqrt{5}}{6}$. Thus the largest singular value of *P* is $\sigma = \sqrt{\frac{3+\sqrt{5}}{6}}$ and we obtain

angle
$$(U, V) = \cos^{-1} \sqrt{\frac{3+\sqrt{5}}{6}}$$
.

3: Let $\mathbf{F} = \mathbf{Z}_7$, the field of integers modulo 7.

(a) Let
$$A = \begin{pmatrix} 2 & 1 & 5 \\ 1 & 4 & 3 \\ 5 & 3 & 0 \end{pmatrix} \in M_{3 \times 3}(\mathbf{F})$$
. Find $Q \in GL(3, \mathbf{F})$ such that $Q^t A Q$ is diagonal.

Solution: We use column and row operations to put A into diagonal form. At each stage we indicate the operations used and give the elementary matrix for the column operations.

$$\begin{array}{cccc} C_2 \mapsto C_2 + 3C_1 & \begin{pmatrix} 2 & 0 & 5 \\ 1 & 0 & 3 \\ 5 & 4 & 0 \end{pmatrix} & R_2 \mapsto R_2 + 3R_1 & \begin{pmatrix} 2 & 0 & 5 \\ 0 & 0 & 4 \\ 5 & 4 & 0 \end{pmatrix} & E_1 = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ C_3 \mapsto C_3 + C_1 & \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 4 \\ 5 & 4 & 5 \end{pmatrix} & R_3 \mapsto R_3 + R_1 & \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 4 & 5 \end{pmatrix} & E_2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ C_2 \mapsto C_2 + C_3 & \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 4 \\ 0 & 2 & 5 \end{pmatrix} & R_2 \mapsto R_2 + R_3 & \begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix} & E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \\ C_3 \mapsto C_3 + 2C_2 & \begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 2 & 2 \end{pmatrix} & R_3 \mapsto R_3 + 2R_2 & \begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2 \end{pmatrix} & E_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \end{array}$$

Thus we can take

$$Q = E_1 E_2 E_3 E_4 = \left(\begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right) \left(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \right)$$
$$= \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix}.$$

(b) Find the number of distinct congruence classes of 3×3 symmetric matrices over **F**.

Solution: We claim that there are 7 congruence classes. Indeed we claim more generally that for each positive integer n there are 2n + 1 congruence classes of symmetric $n \times n$ matrices over **F**. There is only one $n \times n$ matrix with rank zero, namely the zero matrix. We shall show that for $1 \le r \le n$, every symmetric $n \times n$ matrix of rank r over **F** is congruent to exactly one of the two matrices

$$\begin{pmatrix} I_r & \\ & 0_{n-r} \end{pmatrix}, \begin{pmatrix} 3 & \\ & I_{r-1} & \\ & & 0_{n-r} \end{pmatrix}.$$

Let $1 \leq r \leq n$ and let $A \in M_{n \times n}(\mathbf{F})$ with $A^t = A$ and $\operatorname{rank}(A) = r$. We know that A is congruent to a diagonal matrix $D = \operatorname{diag}(d_1, \dots, d_n)$. Note that exactly r of the entries d_i will be non-zero since $\operatorname{rank}(D) = \operatorname{rank}(A) = r$. In $\mathbf{F} = \mathbf{Z}_7$ we have the following table of squares.

We group the non-zero elements into two types, the squares $\{1, 2, 4\}$ and the non-squares $\{3, 5, 6\}$. Using the column and row operations $C_i \leftrightarrow C_j$, $R_i \leftrightarrow R_j$ we can rearrange the entries d_i of D. We order them so that $d_1, \dots, d_k \in \{3, 5, 6\}, d_{k+1}, \dots, d_r \in \{1, 2, 4\}$ and $d_{r+1}, \dots, d_n = 0$. Define $f : \mathbf{F} \to \mathbf{F}$ by

$$\begin{array}{cccccc} x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ f(x) & 1 & 1 & 2 & 1 & 3 & 3 & 2 \\ x f(x)^2 = \begin{cases} 3 & \text{for } x \in \{3, 5, 6\} \\ 1 & \text{for } x \in \{1, 2, 4\} \\ 0 & \text{for } x = 0 \end{cases}$$

so that we have

and let Q be the diagonal matrix $Q = \text{diag}(f(d_1), \dots, f(d_n))$. Note that Q is invertible since each $f(d_i) \neq 0$, and A is congruent to the matrix

$$E = Q^t DQ = \operatorname{diag}(d_1 f(d_1)^2, \cdots, d_n f(d_n)^2)$$
$$= \operatorname{diag}(3, \cdots, 3, 1, \cdots, 1, 0, \cdots, 0)$$
$$= \begin{pmatrix} 3I_k \\ I_{r-k} \\ 0_{n-r} \end{pmatrix}.$$

Next we note that

$$\begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}^t \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

so we have $3I_2$ congruent to I_2 . It follows that, up to congruence, we can replace copies of the 2 × 2 block $3I_2$ in the above matrix E by copies of I_2 , and hence when k is even A is congruent to $\begin{pmatrix} I_r \\ 0_{n-r} \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$

when k is odd A is congruent to $\begin{pmatrix} 3 \\ I_{r-1} \\ 0_{n-r} \end{pmatrix}$. Finally, we must show that these two matrices are not congruent. Suppose, for a contradiction, that they are. Say

$$\begin{pmatrix} S & T \\ U & V \end{pmatrix}^{t} \begin{pmatrix} I_{r} \\ 0 \end{pmatrix} \begin{pmatrix} S & T \\ U & V \end{pmatrix} = \begin{pmatrix} 3 & & \\ & I_{r-1} & \\ & & 0_{n-r} \end{pmatrix}$$

where S is of size $r \times r$. Then we have

$$\begin{pmatrix} S^t & U^t \\ T^t & R^t \end{pmatrix} \begin{pmatrix} S & T \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & & \\ & I_{r-1} & \\ & & 0_{n-r} \end{pmatrix}$$
$$\begin{pmatrix} S^t S & S^t T \\ T^t S & T^t T \end{pmatrix} = \begin{pmatrix} 3 & & \\ & I_{r-1} & \\ & & 0_{n-r} \end{pmatrix}$$

and so $S^t S = \begin{pmatrix} 3 \\ I_{r-1} \end{pmatrix}$. This is impossible since $\det(S^t S) = (\det S)^2 \in \{1, 2, 4\}$, but $\det \begin{pmatrix} 3 \\ I_{r-1} \end{pmatrix} = 3$.

4: (a) Let $A = \begin{pmatrix} 1-i & i \\ 2i & -1+i \end{pmatrix} \in M_{2\times 2}(\mathbf{C})$. Find $\max_{|x|=1} |Ax|$ and $\min_{|y|=1} |Ay|$, and find unit vectors x and y for which these maximum and minimum values are attained.

Solution: In class, we showed how to find $\max_{|u|=1} |L(u)|$ and $\min_{|u|=1} |L(u)|$ when L is a linear map of finitedimensional vector spaces over **R**. The same argument applies when U and V are finite-dimensional vector spaces over **C**. We find that $\max_{|u|=1} |L(u)| = \sigma_1$ with $|L(u_1)| = \sigma_1$ and $\min_{|u|=1} |L(u)| = \sigma_n$ with $L(u_n) = \sigma_n$ where $\sigma_1 \leq \cdots \leq \sigma_n$ are the singular values of L, that is the square roots of the eigenvalues of L^*L and u_1, \cdots, u_n are corresponding orthonormal eigenvectors of L^*L . We have

$$A^*A = \begin{pmatrix} 1+i & -2i \\ -i & -1-i \end{pmatrix} \begin{pmatrix} 1-i & i \\ 2i & -1+i \end{pmatrix} = \begin{pmatrix} 6 & 1+3i \\ 1-3i & 3 \end{pmatrix}.$$

The characteristic polynomial of A^*A is

$$|A^*A - tI| = \begin{vmatrix} 6 - t & 1 + 3i \\ 1 - 3i & 3 - t \end{vmatrix} = t^2 - 9t + 8 = (t - 8)(t - 1)$$

so the eigenvalues of A^*A are $\lambda_1 = 8$ and $\lambda_2 = 1$, hence the singular values of A are $\sigma_1 = 2\sqrt{2}$ and $\sigma_2 = 1$. For $\lambda = 8$ we have

$$A^*A - \lambda I = \begin{pmatrix} -2 & 1+3i \\ 1-3i & -5 \end{pmatrix} \sim \begin{pmatrix} -2 & 1+3i \\ 0 & 0 \end{pmatrix}$$

so we can choose $u_1 = \frac{1}{\sqrt{14}} \begin{pmatrix} 1+3i\\2 \end{pmatrix}$ as a unit eigenvector for λ_1 . Since the other eigenspace is orthogonal we can, by inspection, choose $u_2 = \frac{1}{\sqrt{14}} \begin{pmatrix} 2\\-1+3i \end{pmatrix}$ as a unit eigenvector for λ_2 . Thus $\max_{|x|=1} |Ax| = \sigma_1 = 2\sqrt{2}$ with this maximum attained when $x = u_1$, and $\min_{|y|=1} |Ay| = 1$ with this minimum attained when $y = u_2$.

(b) Let $\mathbf{F} = \mathbf{R}$ or \mathbf{C} . Let $A \in M_{n \times n}(\mathbf{F})$ with $A^* = A$. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of A, listed in increasing order, with repetition according to multiplicity. Show that for each $k = 1, 2, \cdots, n$ we have

$$\lambda_k = \min_{U \subset \mathbf{F}^n, \dim U = k} \left(\max_{x \in U, |x| = 1} x^* A x \right)$$

Solution: Since $A^* = A$, we know that A is unitarily diagonalizable. Choose a basis $\mathcal{U} = \{u_1, u_2, \dots, u_n\}$ for \mathbf{F}^n so that $Au_i = \lambda_i u_i$ for each i. Let U be any subspace of \mathbf{F}^n with dim U = k. Since the dimension of Span $\{u_k, \dots, u_n\}$ is equal to n - k + 1, the intersection $U \cap \text{Span} \{u_k, \dots, u_n\}$ is non-trivial. Choose a unit vector $x \in U \cap \text{Span} \{u_k, \dots, u_n\}$, say $x = t_k u_k + \dots + t_n u_n$. Then

$$x^*Ax = (t_k u_k + \dots + t_n u_n)^*A (t_k u_k + \dots + t_n u_n)$$

= $(\overline{t_k} u_k^* + \dots + \overline{t_n} u_n^*)(t_k \lambda_k u_k + \dots + t_n \lambda_n u_n)$
= $\lambda_k |t_k|^2 + \lambda_{k+1} |t_{k+1}|^2 + \dots + \lambda_n |t_n|^2$
 $\geq \lambda_k |t_k|^2 + \lambda_k |t_{k+1}^2| + \dots + \lambda_k |t_n|^2$
= $\lambda_k (|t_k|^2 + \dots + |t_n|^2) = \lambda_k |x|^2 = \lambda_k$,

so we have $\max_{x \in U, |x|=1} x^* Ax \ge \lambda_k$. Since this is true for every subspace $U \subset \mathbb{C}^n$ with dim U = k, it follows that

$$\min_{U \subset \mathbf{C}^n, \dim U = k} \left(\max_{x \in U, |x| = 1} x^* A x \right) \ge \lambda_k \,.$$

Finally, note that for the k-dimensional subspace $U = \text{Span} \{u_1, \dots, u_k\}$ we know that $\max_{x \in U, |x|=1} x^* A X = \lambda_k$ since for $x = t_1 u_1 + \dots + t_k u_k$ with |x| = 1 we have $x^* A x = \lambda_1 |t_1|^2 + \dots + \lambda_n |t_n|^2 \le \lambda_k (|t_1|^2 + \dots + |t_n|^2) = \lambda_k$ with $x^* A x = \lambda_k$ when $x = u_k$. Thus

$$\min_{U \subset \mathbf{C}^n, \dim U = k} \left(\max_{x \in U, |x| = 1} x^* A x \right) = \lambda_k \,.$$

5: Let U and V be vector spaces over a field **F** with char(**F**) $\neq 2$. For $u \in U$ and $v \in V$, let $u \otimes v$ denote the bilinear map from $U^* \times V^*$ to **F** given by

$$(u \otimes v)(f,g) = f(u)g(v)$$

for $f \in U^*$ and $g \in V^*$. For $u, v \in U$ let $u \odot v$ and $u \land v$ be the bilinear maps from $U^* \times U^* \to \mathbf{F}$ given by

$$u \odot v = \frac{1}{2} ((u \otimes v) + (v \otimes u)), \quad u \wedge v = \frac{1}{2} ((u \otimes v) - (v \otimes u))$$

Note that $u \odot v$ is symmetric and $u \land v$ is alternating. The **tensor product** of U and V is defined to be

$$U \otimes V =$$
Span $\{ u \otimes v | u \in U, v \in V \} \subset$ Bilin $(U^* \times V^*, \mathbf{F})$.

We define the spaces of 2-tensors, symmetric 2-tensors, and alternating 2-tensors on U to be

 $T^2U = U \otimes U$ $S^2 U = \{ S \in T^2 U \mid S \text{ is symmetric} \}$ $\Lambda^2 U = \{ A \in T^2 U \mid A \text{ is alternating} \}$

Suppose that U and V are finite-dimensional, and let $\mathcal{U} = \{u_1, \dots, u_n\}$ and $\mathcal{V} = \{v_1, \dots, v_m\}$ be bases. (a) Show that $\{u_i \otimes v_j | 1 \le i \le n, 1 \le j \le m\}$ is a basis for $U \otimes V$ and that $U \otimes V = \text{Bilin}(U^* \times V^*, \mathbf{F})$. Solution: We begin by noting that for $u, u_1, u_2 \in U, v, v_1, v_2 \in V$ and $c \in \mathbf{F}$ we have

 $(u_1+u_2)\otimes v = u_1\otimes v + u_2\otimes v , \quad u\otimes (v_1+v_2) = u\otimes v_1 + u\otimes v_2 , \quad (cu)\otimes v = c(u\otimes v) = u\otimes (cv) .$ To prove the first of the above three equalities, note that for all $f \in U^*$ and $q \in V^*$ we have

$$((u_1 + u_2) \otimes v)(f,g) = f(u_1 + u_2)g(v) = (f(u_1) + f(u_2))g(v) = f(u_1)g(v) + f(u_2)g(v)$$

= $(u_1 \otimes v)(f,g) + (u_2 \otimes v)(f,g) = ((u_1 \otimes v) + (u_2 \otimes v))(f,g).$

The other two equalities are proven in the same way.

Let $\mathcal{W} = \{u_i \otimes v_j | 1 \leq i \leq n, 1 \leq j \leq m\}$. Since each $u_i \otimes v_j \in U \otimes V$, we have $\operatorname{Span} \mathcal{W} \subset U \otimes V$. To show that $U \otimes V \subset \operatorname{Span} W$ it suffices to show that for all $u \in U$ and $v \in V$ we have $u \otimes v \in \operatorname{Span} W$, and indeed for $u = \sum_{i=1}^{n} s_i u_i \in U$ and $v = \sum_{i=1}^{m} t_j v_j \in V$ we have

$$u \otimes v = \left(\sum_{i=1}^{n} s_i u_i\right) \otimes \left(\sum_{j=1}^{m} t_j v_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} s_i t_j (u_i \otimes v_j) \in \operatorname{Span} \mathcal{W}.$$

Thus \mathcal{W} spans $U \otimes V$. To show that \mathcal{W} is linearly independent, suppose that $\sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} u_i \otimes v_j = 0$. This means that $\left(\sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} u_i \otimes v_j\right) (f,g) = 0$ for all $f \in U^*$ and $g \in V^*$. Let $\mathcal{F} = \{f_1, \dots, f_n\}$ and $\mathcal{G} = \{g_1, \dots, g_m\}$ be the bases for U^* and V^* which are dual to \mathcal{U} and \mathcal{V} . Then for $1 \leq k \leq n$ and $1 \leq l \leq m$ we have

$$0 = \left(\sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} u_i \otimes v_j\right) (f_k, g_l) = 0 = \sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} (u_i \otimes v_j) (f_k, g_l)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} f_k(u_i) g_l(u_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} \delta_{k,i} \delta_{l,j} = s_{k,l}.$$

Thus \mathcal{W} is linearly independent, and hence \mathcal{W} is a basis for $U \otimes V$.

We claim that $U \otimes V = \text{Bilin}(U^* \times V^*, \mathbf{F})$. It suffices to show that every bilinear map $S: U^* \times V^* \to \mathbf{F}$ lies in $U \otimes V$. Let $S: U^* \times V^* \to \mathbf{F}$ be bilinear. Recall that S is completely determined by the values $S(f_i, g_j)$ where $f_i \in \mathcal{F}, g_j \in \mathcal{G}$, indeed $S\left(\sum_{i=1}^n s_i f_i, \sum_{j=1}^m t_j g_j\right) = \sum_{i=1}^n \sum_{j=1}^m s_i t_j S(f_i, g_j)$. Let $T = \sum_{k=1}^n \sum_{l=1}^m S(f_k, g_l)(u_k \otimes v_l)$. Note that $T \in U \otimes V$. Also, for all $f_i \in \mathcal{F}$ and $g_j \in \mathcal{G}$ we have

$$T(f_i, g_j) = \sum_{k=1}^n \sum_{l=1}^m S(f_k, g_l)(u_k \otimes v_l)(f_i, g_j) = \sum_{k=1}^n \sum_{l=1}^m S(f_k, g_l)\delta_{k,i}\delta_{l,j} = S(f_i, g_j).$$

) = $T(f_i, g_i)$ for all $f_i \in \mathcal{F}, g_i \in \mathcal{G}$, we have $S = T$, and hence $S \in U \otimes V$.

Since $S(f_i, g_j) = T(f_i, g_j)$ for all $f_i \in \mathcal{F}, g_j \in \mathcal{G}$, nave S = I, (b) Show that $\{u_i \odot u_j | 1 \le i \le j \le n\}$ is a basis for S^2U .

Solution: Let $\mathcal{W} = \{u_i \odot u_j | 1 \le i \le j \le n\}$. We claim that \mathcal{W} spans S^2U . Let $S \in S^2U$, that is $S \in U \otimes U$ and S is symmetric. From the last paragraph in the solution to part (a) we have $S = \sum_{i=1}^n \sum_{j=1}^n S(f_i, f_j)(u_i \otimes u_j)$. where $\mathcal{F} = \{f_1, \dots, f_n\}$ is the basis for U^* which is dual to \mathcal{U} . Also, we have $S(f_i, f_j) = S(f_j, f_i)$ since S is symmetric, and so

$$\begin{split} S &= \sum_{1 \le i,j \le n} S(f_i, f_j)(u_i \otimes u_j) \\ &= \sum_{i < j} S(f_i, f_j)(u_i \otimes u_j) + \sum_{i = j} S(f_i, f_j)(u_i \otimes u_j) + \sum_{i > j} S(f_i, f_j)(u_i \otimes u_j) \\ &= \sum_{i < j} S(f_i, f_j)(u_i \otimes u_j) + \sum_i S(f_i, f_i)(u_i \otimes u_i) + \sum_{i < j} S(f_j, f_i)(u_j \otimes u_i) \\ &= \sum_{i < j} S(f_i, f_j) \big((u_i \otimes u_j) + (u_j \otimes u_i) \big) + \sum_i S(f_i, f_i)(u_i \otimes f_i) \\ &= \sum_{i < j} 2S(f_i, f_j)(u_i \odot u_j) + \sum_i S(f_i, f_i)(u_i \odot u_i) \\ &\in \operatorname{Span} \mathcal{W}. \end{split}$$

Next we claim that \mathcal{W} is linearly independent. Suppose that $\sum_{1 \leq i \leq j \leq n} s_{i,j}(u_i \odot u_j) = 0$. Then

$$\begin{split} 0 &= \sum_{i \le j} s_{i,j} (u_i \odot u_j) = \sum_{i \le j} \frac{s_{i,j}}{2} \left((u_i \otimes u_j) + (u_j \otimes u_i) \right) \\ &= \sum_{i \le j} \frac{s_{i,j}}{2} (u_i \otimes u_j) + \sum_{i \le j} \frac{s_{i,j}}{2} (u_j \otimes u_i) \\ &= \sum_{i < j} \frac{s_{i,j}}{2} (u_i \otimes u_j) + \sum_{i = j} \frac{s_{i,j}}{2} (u_i \otimes u_j) + \sum_{i = j} \frac{s_{i,j}}{2} (u_j \otimes u_i) + \sum_{i < j} \frac{s_{i,j}}{2} (u_j \otimes u_i) \\ &= \sum_{i < j} \frac{s_{i,j}}{2} (u_i \otimes u_j) + \sum_i s_{i,i} (u_i \otimes u_i) + \sum_{i > j} \frac{s_{j,i}}{2} (u_i \otimes u_j) \\ &= \sum_{i,j} t_{i,j} (u_i \otimes u_j) \end{split}$$

where $t_{i,j} = \frac{s_{i,j}}{2}$ for i < j, and $t_{i,j} = \frac{s_{j,i}}{2}$ for i > j, and $t_{i,i} = s_{i,i}$. Since $\{u_i \otimes u_j | 1 \le i, j \le n\}$ is linearly independent, we must have $t_{i,j} = 0$ for all $1 \le i, j \le n$, and so $s_{i,j} = 0$ for all $1 \le i \le j \le n$. (c) Show that $\{u_i \land u_j | 1 \le i < j \le n\}$ is a basis for $\Lambda^2 U$.

Solution: We omit the solution to part (c) which is very similar to the solution to part (b).