1: (a) For the quadratic curve $7x^2 + 8xy + y^2 + 5 = 0$, find the coordinates of each vertex, find the equation of each asymptote, and sketch the curve.

Solution: Let $K(x,y) = 7x^2 + 8xy + y^2$. Note that $K(x,y) = (x \ y)A\begin{pmatrix} x \\ y \end{pmatrix}$ \hat{y} where $A = \begin{pmatrix} 7 & 4 \\ 4 & 1 \end{pmatrix}$. The characteristic polynomial of A is

$$
|A - tI| = \begin{vmatrix} 7 - t & 4 \\ 4 & 1 - t \end{vmatrix} = t^2 - 8t - 9 = (t - 9)(t + 1)
$$

so the eigenvalues are $\lambda_1 = 9$ and $\lambda_2 = -1$. For $\lambda = 9$ we have

$$
A - \lambda I = \begin{pmatrix} -2 & 4 \\ 4 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}
$$

so we can choose the unit eigenvector $u_1 = \frac{1}{\sqrt{2}}$ 5 $\sqrt{2}$ 1 for λ_1 . The other eigenspace will be orthogonal since A is symmetric, so we can choose the unit eigenvector $u_2 = \frac{1}{\sqrt{2}}$ 5 (-1) 2 for λ_2 . Let $P = (u_1, u_2) = \frac{1}{\sqrt{2}}$ 5 $\binom{2-1}{1-2}$ and let $D = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$ $0 -1$). Then we have $P^*AP = D$. Write $\begin{pmatrix} x \\ y \end{pmatrix}$ \hat{y} $= P \left(\begin{array}{c} s \\ t \end{array} \right)$ t $\Big)$ or equivalently $\Big(\frac{s}{t}\Big)$ t $\bigg) = P^* \left(\begin{array}{c} x \\ y \end{array} \right)$ \hat{y} . Then

$$
K(x,y) = (x \quad y) A\begin{pmatrix} x \\ y \end{pmatrix} = (s \quad t) P^* A P\begin{pmatrix} s \\ t \end{pmatrix} = (s \quad t) D\begin{pmatrix} s \\ t \end{pmatrix} = 9s^2 - t^2
$$

and so

$$
K(u, v) = -5 \iff 9s^2 - t^2 = -5 \iff \frac{t^2}{5} - \frac{s^2}{5/9} = 1.
$$

This is the hyperbola in the st-plane with vertices at $(0, \pm)$ √ tices at $(0, \pm \sqrt{5})$ and asymptotes $t = \pm 3s$. We calculate This is the hyperbola in the st-plane with vertices at $(0, \pm \sqrt{5})$ and asymptotes $t = \pm 3s$. We calculate the points (x, y) corresponding to $(s,t) = (0, \pm \sqrt{5})$ (the vertices) and $(s,t) = (\sqrt{5}, \pm 3\sqrt{5})$ (points on the asymptotes):

$$
P\begin{pmatrix} 0\\ \pm\sqrt{5} \end{pmatrix} = \pm \begin{pmatrix} 2 & -1\\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} = \pm \begin{pmatrix} -1\\ 2 \end{pmatrix}
$$

$$
P\begin{pmatrix} \sqrt{5}\\ \pm 3\sqrt{5} \end{pmatrix} = \begin{pmatrix} 2 & -1\\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1\\ \pm 3 \end{pmatrix} = \begin{pmatrix} -1\\ 7 \end{pmatrix}, \begin{pmatrix} 5\\ -5 \end{pmatrix}
$$

Thus the curve $K(x, y) = -5$ is a hyperbola with vertices at $(x, y) = (-1, 2)$ and $(1, -2)$ and asymptotes $y = -x$ and $y = -7x$.

.

(b) For the real quadratic form $K(x, y, z) = 3x^2 + ay^2 + bz^2 - 6xy + 2xz - 4yz$, sketch the set of points (a, b) for which K is positive-definite.

Solution: We have $K(x, y, z) = (x y z) A$ $\sqrt{ }$ \mathcal{L} \boldsymbol{x} \hat{y} z \setminus where $A =$ $\sqrt{ }$ $\sqrt{ }$ 3 −3 1 -3 a -2 $1 -2 b$ \setminus . Note that $\det A^{1 \times 1} = \det(3) = 3$,

 $\det A^{2\times 2} = \det \begin{pmatrix} 3 & -3 \\ 2 & 3 \end{pmatrix}$ -3 a $= 3a - 9$ and det $A^{3 \times 3} = \det A = 3ab + 6 + 6 - 12 - 9b - a = 3ab - 9b - a$. For K to be positive-definite we need det $A^{2\times2} > 0$, that is $3a - 9 > 0$ so $a > 3$, and we need det $A^3 > 0$, that is

 $3ab - 9b - a > 0$ or equivalently $3b(a-3) > a$. For $a > 3$ this gives $b > \frac{a}{3(a-3)} = \frac{1}{3} + \frac{1}{a-3}$. Thus the required set of points (a, b) lies above and to the right of the hyperbola $y = \frac{1}{3} + \frac{1}{a-3}$, $a > 3$.

2: Let U and V be non-trivial subspaces of \mathbb{R}^n with $U \cap V = \{0\}$. Recall that

$$
angle (U, V) = min \left\{ angle (u, v) | 0 \neq u \in U, 0 \neq v \in V \right\}.
$$

(a) Show that angle $(U, V) = \cos^{-1}(\sigma)$ where σ is the largest singular value of the linear map $P: U \to V$ given by $P(x) = \text{Proj}_V(x)$.

Solution: Recall from Assignment 1 that for fixed $0 \neq u \in \mathbb{R}^n$ we have $\min_{0 \neq v \in V} \text{angle}(u, v) = \cos^{-1} |\text{Proj}_V$ $\frac{u}{|u|}$. Thus we have

$$
\begin{aligned}\n\text{angle}\,(U,V) &= \min_{0 \neq u \in U} \min_{0 \neq v \in V} \text{ angle}\,(u,v) \\
&= \min_{0 \neq u \in U} \cos^{-1}\left(\left|\text{Proj}_{V} \frac{u}{|u|}\right|\right) \\
&= \cos^{-1}\left(\max_{0 \neq u \in U} \left|\text{Proj}_{V} \frac{u}{|u|}\right|\right) \\
&= \cos^{-1}\left(\max_{u \in U, |u| = 1} \left|\text{Proj}_{V}(u)\right|\right) \\
&= \cos^{-1}\left(\max_{u \in U, |u| = 1} \left|P(u)\right|\right) \\
&= \cos^{-1}\sigma\n\end{aligned}
$$

where σ is the largest singular value of P.

(b) Let
$$
u_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}
$$
, $u_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$, $v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. Let $U = \text{Span}\{u_1, u_2\}$ and $V = \text{Span}\{v_1, v_2\}$. Find angle (U, V) .

Solution: To find the singular values of P we find the matrix of P^*P with respect to orthonormal bases. We apply the Gram-Schmidt Procedure to the basis $\{u_1, u_2\}$ to get

$$
w_1 = u_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ w_2 = u_2 - \frac{u_2 \cdot w_1}{|w_1|^2} \ w_1 = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 2 \end{pmatrix} - \frac{6}{4} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{2} \left(\begin{pmatrix} 4 \\ 2 \\ -2 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \\ -3 \\ 3 \end{pmatrix} \right) = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}
$$

then we normalize to get the orthonormal basis $\mathcal{U}=\{x_1,x_2\}$ with

$$
x_1 = \frac{w_1}{|w_1|} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix} , x_2 = \frac{w_2}{|w_2|} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} .
$$

Next we apply the Gram-Schmidt Procedure to $\{v_1, v_2\}$ to get

$$
z_1 = v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} , z_2 = v_2 - \frac{v_2 \cdot z_1}{|z_1|^2} z_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix} - \frac{3}{3} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}
$$

then we normalize to get the orthonormal basis $\mathcal{V} = \{y_1, y_2\}$ for V where

$$
y_1 = \frac{z_1}{|z_1|^2} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}, y_2 = \frac{z_2}{|z_2|^2} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}.
$$

Now let

$$
A = [P]_{\mathcal{V}}^{\mathcal{U}} = \begin{pmatrix} x_1 \cdot y_1 & x_2 \cdot y_1 \\ x_1 \cdot y_2 & x_2 \cdot y_2 \end{pmatrix} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}
$$

.

Then

$$
\[P^*P\]_{\mathcal{V}}^{\mathcal{U}} = A^*A = \frac{1}{12} \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 2 & 2 \\ 2 & 10 \end{pmatrix} = \frac{1}{6} B \text{ , where } B = \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}.
$$

The characteristic polynomial of B is

$$
|B - tI| = \begin{pmatrix} 1 - t & 1 \\ 1 & 5 - t \end{pmatrix} = t^2 - 6t + 4
$$

so *B* has eigenvalues $\lambda = \frac{6 \pm \sqrt{20}}{2} = 3 \pm \frac{1}{2}$ $\sqrt{5}$. Since $A^*A = \frac{1}{6}B$, the eigenvalues of A^*A , or equivalently the eigenvalues of P^*P , are $\frac{3\pm\sqrt{5}}{6}$. Thus the largest singular value of P is $\sigma = \sqrt{\frac{3+\sqrt{5}}{6}}$ and we obtain

angle
$$
(U, V) = \cos^{-1} \sqrt{\frac{3 + \sqrt{5}}{6}}
$$
.

3: Let $\mathbf{F} = \mathbf{Z}_7$, the field of integers modulo 7.

(a) Let
$$
A = \begin{pmatrix} 2 & 1 & 5 \\ 1 & 4 & 3 \\ 5 & 3 & 0 \end{pmatrix} \in M_{3\times 3}(\mathbf{F})
$$
. Find $Q \in GL(3, \mathbf{F})$ such that $Q^t A Q$ is diagonal.

Solution: We use column and row operations to put A into diagonal form. At each stage we indicate the operations used and give the elementary matrix for the column operations.

$$
C_2 \rightarrow C_2 + 3C_1 \begin{pmatrix} 2 & 0 & 5 \\ 1 & 0 & 3 \\ 5 & 4 & 0 \end{pmatrix} R_2 \rightarrow R_2 + 3R_1 \begin{pmatrix} 2 & 0 & 5 \\ 0 & 0 & 4 \\ 5 & 4 & 0 \end{pmatrix} R_1 = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

\n
$$
C_3 \rightarrow C_3 + C_1 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 4 \\ 5 & 4 & 5 \end{pmatrix} R_3 \rightarrow R_3 + R_1 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 4 & 5 \end{pmatrix} R_2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

\n
$$
C_2 \rightarrow C_2 + C_3 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 4 \\ 0 & 2 & 5 \end{pmatrix} R_2 \rightarrow R_2 + R_3 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix} R_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}
$$

\n
$$
C_3 \rightarrow C_3 + 2C_2 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 2 & 2 \end{pmatrix} R_3 \rightarrow R_3 + 2R_2 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2 \end{pmatrix} R_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}
$$

Thus we can take

$$
Q = E_1 E_2 E_3 E_4 = \left(\begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right) \left(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \right)
$$

$$
= \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix}.
$$

(b) Find the number of distinct congruence classes of 3×3 symmetric matrices over **F**.

Solution: We claim that there are 7 congruence classes. Indeed we claim more generally that for each positive integer n there are $2n + 1$ congruence classes of symmetric $n \times n$ matrices over **F**. There is only one $n \times n$ matrix with rank zero, namely the zero matrix. We shall show that for $1 \leq r \leq n$, every symmetric $n \times n$ matrix of rank r over \bf{F} is congruent to exactly one of the two matrices

$$
\left(\begin{array}{cc}I_r&\\&0_{n-r}\end{array}\right)\;,\;\left(\begin{array}{cc}3&\\&I_{r-1}&\\&&0_{n-r}\end{array}\right)\;.
$$

Let $1 \leq r \leq n$ and let $A \in M_{n \times n}(\mathbf{F})$ with $A^t = A$ and rank $(A) = r$. We know that A is congruent to a diagonal matrix $D = \text{diag}(d_1, \dots, d_n)$. Note that exactly r of the entries d_i will be non-zero since rank (D) = rank (A) = r. In $\mathbf{F} = \mathbf{Z}_7$ we have the following table of squares.

$$
\begin{array}{ccccccccc}\nx & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
x^2 & 0 & 1 & 4 & 2 & 2 & 4 & 1\n\end{array}
$$

We group the non-zero elements into two types, the squares $\{1, 2, 4\}$ and the non-squares $\{3, 5, 6\}$. Using the column and row operations $C_i \leftrightarrow C_j$, $R_i \leftrightarrow R_j$ we can rearrange the entries d_i of D. We order them so that $d_1, \dots, d_k \in \{3, 5, 6\}, d_{k+1}, \dots, d_r \in \{1, 2, 4\}$ and $d_{r+1}, \dots, d_n = 0$. Define $f : \mathbf{F} \to \mathbf{F}$ by

$$
x \t 0 \t 1 \t 2 \t 3 \t 4 \t 5 \t 6
$$

$$
f(x) \t 1 \t 1 \t 2 \t 1 \t 3 \t 3 \t 2
$$

$$
xf(x)^{2} = \begin{cases} 3 \text{ for } x \in \{3, 5, 6\} \\ 1 \text{ for } x \in \{1, 2, 4\} \\ 0 \text{ for } x = 0 \end{cases}
$$

so that we have

and let Q be the diagonal matrix $Q = diag(f(d_1), \dots, f(d_n))$. Note that Q is invertible since each $f(d_i) \neq 0$, and A is congruent to the matrix

$$
E = Qt DQ = diag(d_1 f(d_1)2, \cdots, d_n f(d_n)2)
$$

= diag(3, \cdots, 3, 1, \cdots, 1, 0, \cdots, 0)
=
$$
\begin{pmatrix} 3I_k & & \\ & I_{r-k} & \\ & & 0_{n-r} \end{pmatrix}.
$$

Next we note that

$$
\begin{pmatrix} 1 & 2 \ 5 & 1 \end{pmatrix}^t \begin{pmatrix} 3 & 0 \ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \ 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 6 \ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}
$$

so we have $3I_2$ congruent to I_2 . It follows that, up to congruence, we can replace copies of the 2×2 block $3I_2$ in the above matrix E by copies of I_2 , and hence when k is even A is congruent to $\left(I_r\right)$ 0_{n-r} $\Big)$ and

when k is odd A is congruent to $\sqrt{ }$ \mathcal{L} 3 I_{r-1} 0_{n-r} \setminus . Finally, we must show that these two matrices are not congruent. Suppose, for a contradiction, that they are. Say

$$
\begin{pmatrix} S & T \\ U & V \end{pmatrix}^t \begin{pmatrix} I_r & \\ & 0 \end{pmatrix} \begin{pmatrix} S & T \\ U & V \end{pmatrix} = \begin{pmatrix} 3 & & \\ & I_{r-1} & \\ & & 0_{n-r} \end{pmatrix}
$$

where S is of size $r \times r$. Then we have

$$
\begin{pmatrix} S^t & U^t \ T^t & R^t \end{pmatrix} \begin{pmatrix} S & T \ 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & & & \\ & I_{r-1} & & \\ & & 0_{n-r} \end{pmatrix}
$$

$$
\begin{pmatrix} S^t S & S^t T \\ T^t S & T^t T \end{pmatrix} = \begin{pmatrix} 3 & & \\ & I_{r-1} & \\ & & 0_{n-r} \end{pmatrix}
$$

and so $S^tS = \begin{pmatrix} 3 \end{pmatrix}$ I_{r-1}). This is impossible since $\det(S^tS) = (\det S)^2 \in \{1, 2, 4\}$, but $\det \begin{pmatrix} 3 & 3 \end{pmatrix}$ I_{r-1} $= 3.$ 4: (a) Let $A = \begin{pmatrix} 1 - i & i \\ 0 & 1 \end{pmatrix}$ $2i \quad -1 + i$ $\left(\int_{\mathbb{R}} \sum_{z=1}^{\infty} |A_{z}|^2 \right)$ and $\lim_{|z|=1} |Ay|$, and find unit vectors x and y for which these maximum and minimum values are attained.

Solution: In class, we showed how to find $\max_{|u|=1} |L(u)|$ and $\min_{|u|=1} |L(u)|$ when L is a linear map of finitedimensional vector spaces over $\bf R$. The same argument applies when U and V are finite-dimensional vector spaces over C. We find that $\max |L(u)| = \sigma_1$ with $|L(u_1)| = \sigma_1$ and $\min |L(u)| = \sigma_n$ with $L(u_n) = \sigma_n$ $|u|=1$ $|u|=1$ where $\sigma_1 \leq \cdots \leq \sigma_n$ are the singular values of L, that is the square roots of the eigenvalues of L^*L) and u_1, \dots, u_n are corresponding orthonormal eigenvectors of L^*L . We have

$$
A^*A = \begin{pmatrix} 1+i & -2i \\ -i & -1-i \end{pmatrix} \begin{pmatrix} 1-i & i \\ 2i & -1+i \end{pmatrix} = \begin{pmatrix} 6 & 1+3i \\ 1-3i & 3 \end{pmatrix}.
$$

The characteristic polynomial of A∗A is

$$
|A^*A - tI|
$$
 = $\begin{vmatrix} 6-t & 1+3i \\ 1-3i & 3-t \end{vmatrix}$ = $t^2 - 9t + 8 = (t-8)(t-1)$

so the eigenvalues of A^*A are $\lambda_1 = 8$ and $\lambda_2 = 1$, hence the singular values of A are $\sigma_1 = 2\sqrt{2}$ and $\sigma_2 = 1$. For $\lambda = 8$ we have

$$
A^*A - \lambda I = \begin{pmatrix} -2 & 1+3i \\ 1-3i & -5 \end{pmatrix} \sim \begin{pmatrix} -2 & 1+3i \\ 0 & 0 \end{pmatrix}
$$

so we can choose $u_1 = \frac{1}{\sqrt{14}} \begin{pmatrix} 1+3i \\ 2 \end{pmatrix}$ 2 as a unit eigenvector for λ_1 . Since the other eigenspace is orthogonal we can, by inspection, choose $u_2 = \frac{1}{\sqrt{14}} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ $-1 + 3i$) as a unit eigenvector for λ_2 . Thus $\max_{|x|=1} |Ax| = \sigma_1 = 2\sqrt{2}$ with this maximum attained when $x = u_1$, and $\min_{|y|=1} |Ay| = 1$ with this minimum attained when $y = u_2$.

(b) Let $\mathbf{F} = \mathbf{R}$ or C. Let $A \in M_{n \times n}(\mathbf{F})$ with $A^* = A$. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of A, listed in increasing order, with repetition according to multiplicity. Show that for each $k = 1, 2, \dots, n$ we have

$$
\lambda_k = \min_{U \subset \mathbf{F}^n, \dim U = k} \left(\max_{x \in U, |x| = 1} x^* A x \right)
$$

Solution: Since $A^* = A$, we know that A is unitarily diagonalizable. Choose a basis $\mathcal{U} = \{u_1, u_2, \dots, u_n\}$ for \mathbf{F}^n so that $Au_i = \lambda_i u_i$ for each i. Let U be any subspace of \mathbf{F}^n with $\dim U = k$. Since the dimension of Span $\{u_k, \dots, u_n\}$ is equal to $n - k + 1$, the intersection $U \cap \text{Span } \{u_k, \dots, u_n\}$ is non-trivial. Choose a unit vector $x \in U \cap \text{Span } \{u_k, \dots, u_n\}$, say $x = t_k u_k + \dots + t_n u_n$. Then

$$
x^* A x = (t_k u_k + \dots + t_n u_n)^* A (t_k u_k + \dots + t_n u_n)
$$

= $(\overline{t_k} u_k^* + \dots + \overline{t_n} u_n^*)(t_k \lambda_k u_k + \dots + t_n \lambda_n u_n)$
= $\lambda_k |t_k|^2 + \lambda_{k+1} |t_{k+1}|^2 + \dots + \lambda_n |t_n|^2$
 $\geq \lambda_k |t_k|^2 + \lambda_k |t_{k+1}^2| + \dots + \lambda_k |t_n|^2$
= $\lambda_k (|t_k|^2 + \dots + |t_n|^2) = \lambda_k |x|^2 = \lambda_k,$

so we have $\max_{x \in U, |x|=1} x^*Ax \geq \lambda_k$. Since this is true for every subspace $U \subset \mathbb{C}^n$ with $\dim U = k$, it follows that

$$
\min_{U \subset \mathbf{C}^n, \dim U = k} \left(\max_{x \in U, |x| = 1} x^* A x \right) \ge \lambda_k.
$$

Finally, note that for the k-dimensional subspace $U = \text{Span}\{u_1, \dots, u_k\}$ we know that $\max_{x \in U, |x|=1} x^* A X = \lambda_k$ since for $x = t_1 u_1 + \cdots + t_k u_k$ with $|x| = 1$ we have $x^* A x = \lambda_1 |t_1|^2 + \cdots + \lambda_n |t_n|^2 \leq \lambda_k (|t_1|^2 + \cdots + |t_n|^2) = \lambda_k$ with $x^*Ax = \lambda_k$ when $x = u_k$. Thus

$$
\min_{U \subset \mathbf{C}^n, \dim U = k} \left(\max_{x \in U, |x| = 1} x^* A x \right) = \lambda_k.
$$

5: Let U and V be vector spaces over a field **F** with char(**F**) \neq 2. For $u \in U$ and $v \in V$, let $u \otimes v$ denote the bilinear map from $U^* \times V^*$ to **F** given by

$$
(u \otimes v)(f, g) = f(u)g(v)
$$

for $f \in U^*$ and $g \in V^*$. For $u, v \in U$ let $u \odot v$ and $u \wedge v$ be the bilinear maps from $U^* \times U^* \to \mathbf{F}$ given by 11 (a)

$$
u \odot v = \frac{1}{2} ((u \otimes v) + (v \otimes u)), \quad u \wedge v = \frac{1}{2} ((u \otimes v) - (v \otimes u)).
$$

Note that $u \odot v$ is symmetric and $u \wedge v$ is alternating. The **tensor product** of U and V is defined to be

$$
U \otimes V = \text{Span}\left\{u \otimes v \middle| u \in U, v \in V\right\} \subset \text{Bilin}(U^* \times V^*, \mathbf{F}).
$$

We define the spaces of 2-tensors, symmetric 2-tensors, and alternating 2-tensors on U to be

$$
T^2U = U \otimes U
$$

$$
S^2U = \{ S \in T^2U \mid S \text{ is symmetric} \}
$$

$$
\Lambda^2U = \{ A \in T^2U \mid A \text{ is alternating} \}
$$

Suppose that U and V are finite-dimensional, and let $\mathcal{U} = \{u_1, \dots, u_n\}$ and $\mathcal{V} = \{v_1, \dots, v_m\}$ be bases. (a) Show that $\{u_i \otimes v_j | 1 \leq i \leq n, 1 \leq j \leq m\}$ is a basis for $U \otimes V$ and that $U \otimes V = \text{Bilin}(U^* \times V^*, \mathbf{F})$. Solution: We begin by noting that for $u, u_1, u_2 \in U$, $v, v_1, v_2 \in V$ and $c \in \mathbf{F}$ we have

 $(u_1 + u_2) \otimes v = u_1 \otimes v + u_2 \otimes v$, $u \otimes (v_1 + v_2) = u \otimes v_1 + u \otimes v_2$, $(cu) \otimes v = c(u \otimes v) = u \otimes (cv)$. To prove the first of the above three equalities, note that for all $f \in U^*$ and $g \in V^*$ we have

$$
((u_1 + u_2) \otimes v)(f,g) = f(u_1 + u_2)g(v) = (f(u_1) + f(u_2))g(v) = f(u_1)g(v) + f(u_2)g(v)
$$

= $(u_1 \otimes v)(f,g) + (u_2 \otimes v)(f,g) = ((u_1 \otimes v) + (u_2 \otimes v))(f,g).$

The other two equalities are proven in the same way.

Let $W = \{u_i \otimes v_j | 1 \leq i \leq n, 1 \leq j \leq m\}$. Since each $u_i \otimes v_j \in U \otimes V$, we have Span $W \subset U \otimes V$. To show that $U \otimes V \subset \text{Span } W$ it suffices to show that for all $u \in U$ and $v \in V$ we have $u \otimes v \in \text{Span } W$, and indeed for $u = \sum_{n=1}^{\infty}$ $\sum_{i=1}^{n} s_i u_i \in U$ and $v = \sum_{j=1}^{m}$ $\sum_{j=1} t_j v_j \in V$ we have

$$
u \otimes v = \left(\sum_{i=1}^n s_i u_i\right) \otimes \left(\sum_{j=1}^m t_j v_j\right) = \sum_{i=1}^n \sum_{j=1}^m s_i t_j (u_i \otimes v_j) \in \text{Span}\, \mathcal{W}.
$$

Thus W spans $U \otimes V$. To show that W is linearly independent, suppose that $\sum_{n=1}^{n}$ $i=1$ $\sum_{i=1}^{m}$ $\sum_{j=1} s_{i,j} u_j \otimes v_j = 0$. This means that $\left(\begin{array}{c}n\\ \sum\end{array}\right)$ $i=1$ $\sum_{i=1}^{m}$ $\sum_{j=1}^{m} s_{i,j} u_i \otimes v_j$ $(f, g) = 0$ for all $f \in U^*$ and $g \in V^*$. Let $\mathcal{F} = \{f_1, \dots, f_n\}$ and $\mathcal{G} = \{g_1, \dots, g_m\}$ be the bases for U^* and V^* which are dual to U and V. Then for $1 \leq k \leq n$ and $1 \leq l \leq m$ we have

$$
0 = \left(\sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} u_i \otimes v_j\right) (f_k, g_l) = 0 = \sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} (u_i \otimes v_j) (f_k, g_l)
$$

=
$$
\sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} f_k(u_i) g_l(u_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} s_{i,j} \delta_{k,i} \delta_{l,j} = s_{k,l}.
$$

Thus W is linearly independent, and hence W is a basis for $U \otimes V$.

We claim that $U \otimes V = \text{Bilin}(U^* \times V^*, \mathbf{F})$. It suffices to show that every bilinear map $S: U^* \times V^* \to \mathbf{F}$ lies in $U \otimes V$. Let $S: U^* \times V^* \to \mathbf{F}$ be bilinear. Recall that S is completely determined by the values $S(f_i, g_j)$ where $f_i \in \mathcal{F}, g_j \in \mathcal{G}$, indeed $S\left(\sum_{i=1}^{n} a_i\right)$ $\sum_{i=1}^{n} s_i f_i$, $\sum_{j=1}^{m}$ $\sum_{j=1}^{m} t_j g_j$ = $\sum_{i=1}^{n}$ $i=1$ $\sum_{i=1}^{m}$ $\sum_{j=1}^{m} s_i t_j S(f_i, g_j)$. Let $T = \sum_{k=1}^{n}$ $k=1$ $\sum_{i=1}^{m}$ $\sum_{l=1} S(f_k, g_l)(u_k \otimes v_l).$ Note that $T \in U \otimes V$. Also, for all $f_i \in \tilde{\mathcal{F}}$ and $g_j \in \mathcal{G}$ we have

$$
T(f_i, g_j) = \sum_{k=1}^n \sum_{l=1}^m S(f_k, g_l)(u_k \otimes v_l)(f_i, g_j) = \sum_{k=1}^n \sum_{l=1}^m S(f_k, g_l) \delta_{k,i} \delta_{l,j} = S(f_i, g_j).
$$

\n
$$
T(f_i, g_j) = T(f_i, g_j) \text{ for all } f_i \in \mathcal{F}, g_i \in G, \text{ we have } S = T \text{ and hence } S \in U \otimes V.
$$

Since $S(f_i, g_j) = T(f_i, g_j)$ for all $f_i \in \mathcal{F}, g_j \in \mathcal{G}$, we have $S = T$, and hence $S \in U \otimes V$.

(b) Show that $\{u_i \odot u_j | 1 \leq i \leq j \leq n\}$ is a basis for S^2U .

Solution: Let $\mathcal{W} = \{u_i \odot u_j | 1 \leq i \leq j \leq n\}$. We claim that W spans S^2U . Let $S \in S^2U$, that is $S \in U \otimes U$ and S is symmetric. From the last paragraph in the solution to part (a) we have $S = \sum_{n=1}^{\infty}$ $i=1$ $\sum_{n=1}^{\infty}$ $\sum_{j=1} S(f_i, f_j)(u_i \otimes u_j).$ where $\mathcal{F} = \{f_1, \dots, f_n\}$ is the basis for U^* which is dual to U. Also, we have $S(f_i, f_j) = S(f_j, f_i)$ since S is symmetric, and so

$$
S = \sum_{1 \leq i,j \leq n} S(f_i, f_j)(u_i \otimes u_j)
$$

\n
$$
= \sum_{i < j} S(f_i, f_j)(u_i \otimes u_j) + \sum_{i=j} S(f_i, f_j)(u_i \otimes u_j) + \sum_{i > j} S(f_i, f_j)(u_i \otimes u_j)
$$

\n
$$
= \sum_{i < j} S(f_i, f_j)(u_i \otimes u_j) + \sum_i S(f_i, f_i)(u_i \otimes u_i) + \sum_{i < j} S(f_j, f_i)(u_j \otimes u_i)
$$

\n
$$
= \sum_{i < j} S(f_i, f_j)(u_i \otimes u_j) + (u_j \otimes u_i) + \sum_i S(f_i, f_i)(u_i \otimes f_i)
$$

\n
$$
= \sum_{i < j} 2S(f_i, f_j)(u_i \otimes u_j) + \sum_i S(f_i, f_i)(u_i \otimes u_i)
$$

\n
$$
\in \text{Span } \mathcal{W}.
$$

Next we claim that W is linearly independent. Suppose that \sum $1 \leq i \leq j \leq n$ $s_{i,j}(u_i \odot u_j) = 0$. Then

$$
0 = \sum_{i \leq j} s_{i,j}(u_i \odot u_j) = \sum_{i \leq j} \frac{s_{i,j}}{2} ((u_i \otimes u_j) + (u_j \otimes u_i))
$$

\n
$$
= \sum_{i \leq j} \frac{s_{i,j}}{2} (u_i \otimes u_j) + \sum_{i \leq j} \frac{s_{i,j}}{2} (u_j \otimes u_i)
$$

\n
$$
= \sum_{i < j} \frac{s_{i,j}}{2} (u_i \otimes u_j) + \sum_{i \leq j} \frac{s_{i,j}}{2} (u_i \otimes u_j) + \sum_{i \leq j} \frac{s_{i,j}}{2} (u_j \otimes u_i) + \sum_{i < j} \frac{s_{i,j}}{2} (u_j \otimes u_i)
$$

\n
$$
= \sum_{i < j} \frac{s_{i,j}}{2} (u_i \otimes u_j) + \sum_{i} s_{i,i} (u_i \otimes u_i) + \sum_{i > j} \frac{s_{j,i}}{2} (u_i \otimes u_j)
$$

\n
$$
= \sum_{i,j} t_{i,j} (u_i \otimes u_j)
$$

where $t_{i,j} = \frac{s_{i,j}}{2}$ $\frac{i,j}{2}$ for $i < j$, and $t_{i,j} = \frac{s_{j,i}}{2}$ $\frac{j_i i}{2}$ for $i > j$, and $t_{i,i} = s_{i,i}$. Since $\{u_i \otimes u_j | 1 \leq i, j \leq n\}$ is linearly independent, we must have $t_{i,j} = 0$ for all $1 \leq i, j \leq n$, and so $s_{i,j} = 0$ for all $1 \leq i \leq j \leq n$. (c) Show that $\{u_i \wedge u_j | 1 \leq i < j \leq n\}$ is a basis for $\Lambda^2 U$.

Solution: We omit the the solution to part (c) which is very similar to the solution to part (b).