
MATH 245 Linear Algebra 2, Solutions to Assignment 6

1: (a) For the quadratic curve 7x2 + 8xy+ y2 + 5 = 0, find the coordinates of each vertex, find the equation of
each asymptote, and sketch the curve.

Solution: Let K(x, y) = 7x2 + 8xy + y2. Note that K(x, y) =
(
x y

)
A

(
x
y

)
where A =

(
7 4
4 1

)
. The

characteristic polynomial of A is∣∣A− tI∣∣ =
∣∣∣∣ 7− t 4

4 1− t

∣∣∣∣ = t2 − 8t− 9 = (t− 9)(t+ 1)

so the eigenvalues are λ1 = 9 and λ2 = −1. For λ = 9 we have

A− λI =
(
−2 4

4 −8

)
∼
(

1 −2
0 0

)
so we can choose the unit eigenvector u1 = 1√

5

(
2
1

)
for λ1. The other eigenspace will be orthogonal since A

is symmetric, so we can choose the unit eigenvector u2 = 1√
5

(
−1

2

)
for λ2. Let P =

(
u1, u2

)
= 1√

5

(
2 −1
1 2

)
and let D =

(
9 0
0 −1

)
. Then we have P ∗AP = D. Write

(
x
y

)
= P

(
s
t

)
or equivalently

(
s
t

)
= P ∗

(
x
y

)
.

Then

K(x, y) = (x y )A
(
x
y

)
= ( s t )P ∗AP

(
s
t

)
= ( s t )D

(
s
t

)
= 9s2 − t2

and so

K(u, v) = −5 ⇐⇒ 9s2 − t2 = −5 ⇐⇒ t2

5
− s2

5/9
= 1 .

This is the hyperbola in the st-plane with vertices at (0,±
√

5) and asymptotes t = ±3s. We calculate
the points (x, y) corresponding to (s, t) = (0,±

√
5) (the vertices) and (s, t) = (

√
5,±3

√
5) (points on the

asymptotes):

P

(
0
±
√

5

)
= ±

(
2 −1
1 2

)(
0
1

)
= ±

(
−1

2

)
P

( √
5

±3
√

5

)
=
(

2 −1
1 2

)(
1
±3

)
=
(
−1

7

)
,

(
5
−5

)
.

Thus the curve K(x, y) = −5 is a hyperbola with vertices at (x, y) = (−1, 2) and (1,−2) and asymptotes
y = −x and y = −7x.

t y

s x



(b) For the real quadratic form K(x, y, z) = 3x2 + ay2 + bz2− 6xy+ 2xz− 4yz, sketch the set of points (a, b)
for which K is positive-definite.

Solution: We have K(x, y, z) =
(
x y z

)
A

x
y
z

 where A =

 3 −3 1
−3 a −2

1 −2 b

. Note that detA1×1 = det(3) = 3,

detA2×2 = det
(

3 −3
−3 a

)
= 3a− 9 and detA3×3 = detA = 3ab+ 6 + 6− 12− 9b− a = 3ab− 9b− a. For K

to be positive-definite we need detA2×2 > 0, that is 3a − 9 > 0 so a > 3, and we need detA3 > 0, that is
3ab− 9b− a > 0 or equivalently 3b(a− 3) > a. For a > 3 this gives b > a

3(a−3) = 1
3 + 1

a−3 . Thus the required
set of points (a, b) lies above and to the right of the hyperbola y = 1

3 + 1
a−3 , a > 3.

b

a

2: Let U and V be non-trivial subspaces of Rn with U ∩ V = {0}. Recall that

angle (U, V ) = min
{

angle (u, v)
∣∣0 6= u ∈ U, 0 6= v ∈ V

}
.

(a) Show that angle (U, V ) = cos−1(σ) where σ is the largest singular value of the linear map P : U → V
given by P (x) = Proj

V
(x).

Solution: Recall from Assignment 1 that for fixed 0 6= u ∈ Rn we have min
0 6=v∈V

angle (u, v) = cos−1
∣∣Proj

V

u
|u|
∣∣.

Thus we have
angle (U, V ) = min

06=u∈U
min

06=v∈V
angle (u, v)

= min
06=u∈U

cos−1
(∣∣Proj

V

u
|u|
∣∣)

= cos−1
(

max
06=u∈U

∣∣Proj
V

u
|u|
∣∣)

= cos−1
(

max
u∈U,|u|=1

∣∣Proj
V

(u)
∣∣)

= cos−1
(

max
u∈U,|u|=1

∣∣P (u)
∣∣)

= cos−1 σ

where σ is the largest singular value of P .



(b) Let u1 =


1
1
−1

1

, u2 =


2
1
−1

2

, v1 =


1
1
0
−1

 and v2 =


2
1
1
0

. Let U = Span {u1, u2} and V =

Span {v1, v2}. Find angle (U, V ).

Solution: To find the singular values of P we find the matrix of P ∗P with respect to orthonormal bases. We
apply the Gram-Schmidt Procedure to the basis {u1, u− 2} to get

w1 = u1 =


1
1
−1

1

 , w2 = u2 −
u2 .w1

|w1|2
w1 =


2
1
−1

2

− 6
4


1
1
−1

1

 =
1
2




4
2
−2

4

−


3
3
−3

3


 =

1
2


1
−1

1
1


then we normalize to get the orthonormal basis U = {x1, x2} with

x1 =
w1

|w1|
=

1
2


1
1
−1

1

 , x2 =
w2

|w2|
=

1
2


1
−1

1
1

 .

Next we apply the Gram-Schmidt Procedure to {v1, v2} to get

z1 = v1 =


1
1
0
−1

 , z2 = v2 −
v2 . z1
|z1|2

z1 =


2
1
1
0

− 3
3


1
1
0
−1

 =


1
0
1
1


then we normalize to get the orthonormal basis V = {y1, y2} for V where

y1 =
z1
|z1|2

=
1√
3


1
1
0
−1

 , y2 =
z2
|z2|2

=
1√
3


1
0
1
1

 .

Now let

A =
[
P
]U
V =

(
x1 . y1 x2 . y1
x1 . y2 x2 . y2

)
=

1
2
√

3

(
1 −1
1 3

)
.

Then [
P ∗P

]U
V = A∗A =

1
12

(
1 1
−1 3

)(
1 −1
1 3

)
=

1
12

(
2 2
2 10

)
= 1

6 B , where B =
(

1 1
1 5

)
.

The characteristic polynomial of B is∣∣B − tI∣∣ =
(

1− t 1
1 5− t

)
= t2 − 6t+ 4

so B has eigenvalues λ = 6±
√

20
2 = 3 ±

√
5. Since A∗A = 1

6 B, the eigenvalues of A∗A, or equivalently the

eigenvalues of P ∗P , are 3±
√

5
6 . Thus the largest singular value of P is σ =

√
3+
√

5
6 and we obtain

angle (U, V ) = cos−1
√

3+
√

5
6 .



3: Let F = Z7, the field of integers modulo 7.

(a) Let A =

 2 1 5
1 4 3
5 3 0

 ∈M3×3(F). Find Q ∈ GL(3,F) such that QtAQ is diagonal.

Solution: We use column and row operations to put A into diagonal form. At each stage we indicate the
operations used and give the elementary matrix for the column operations.

C2 7→ C2 + 3C1

 2 0 5
1 0 3
5 4 0

 R2 7→ R2 + 3R1

 2 0 5
0 0 4
5 4 0

 E1 =

 1 3 0
0 1 0
0 0 1


C3 7→ C3 + C1

 2 0 0
0 0 4
5 4 5

 R3 7→ R3 +R1

 2 0 0
0 0 4
0 4 5

 E2 =

 1 0 1
0 1 0
0 0 1


C2 7→ C2 + C3

 2 0 0
0 4 4
0 2 5

 R2 7→ R2 +R3

 2 0 0
0 6 2
0 2 5

 E3 =

 1 0 0
0 1 0
0 1 1


C3 7→ C3 + 2C2

 2 0 0
0 6 0
0 2 2

 R3 7→ R3 + 2R2

 2 0 0
0 6 0
0 0 2

 E4 =

 1 0 0
0 1 2
0 0 1


Thus we can take

Q = E1E2E3E4 =

 1 3 0
0 1 0
0 0 1

 1 0 1
0 1 0
0 0 1

 1 0 0
0 1 0
0 1 1

 1 0 0
0 1 2
0 0 1


=

 1 3 1
0 1 0
0 0 1

 1 0 0
0 1 2
0 1 3

 =

 1 4 2
0 1 2
0 1 3

 .



(b) Find the number of distinct congruence classes of 3× 3 symmetric matrices over F.

Solution: We claim that there are 7 congruence classes. Indeed we claim more generally that for each positive
integer n there are 2n+ 1 congruence classes of symmetric n× n matrices over F. There is only one n× n
matrix with rank zero, namely the zero matrix. We shall show that for 1 ≤ r ≤ n, every symmetric n × n
matrix of rank r over F is congruent to exactly one of the two matrices(

Ir
0n−r

)
,

 3
Ir−1

0n−r

 .

Let 1 ≤ r ≤ n and let A ∈ Mn×n(F) with At = A and rank(A) = r. We know that A is congruent
to a diagonal matrix D = diag(d1, · · · , dn). Note that exactly r of the entries di will be non-zero since
rank(D) = rank(A) = r. In F = Z7 we have the following table of squares.

x 0 1 2 3 4 5 6
x2 0 1 4 2 2 4 1

We group the non-zero elements into two types, the squares {1, 2, 4} and the non-squares {3, 5, 6}. Using
the column and row operations Ci ↔ Cj , Ri ↔ Rj we can rearrange the entries di of D. We order them so
that d1, · · · , dk ∈ {3, 5, 6}, dk+1, · · · , dr ∈ {1, 2, 4} and dr+1, · · · , dn = 0. Define f : F→ F by

x 0 1 2 3 4 5 6
f(x) 1 1 2 1 3 3 2

so that we have

x f(x)2 =


3 for x ∈ {3, 5, 6}
1 for x ∈ {1, 2, 4}
0 for x = 0

and let Q be the diagonal matrix Q = diag
(
f(d1), · · · , f(dn)

)
. Note that Q is invertible since each f(di) 6= 0,

and A is congruent to the matrix

E = QtDQ = diag
(
d1f(d1)2, · · · , dnf(dn)2

)
= diag

(
3, · · · , 3, 1, · · · , 1, 0, · · · , 0

)
=

 3Ik
Ir−k

0n−r

 .

Next we note that (
1 2
5 1

)t( 3 0
0 3

)(
1 2
5 1

)
=
(

1 5
2 1

)(
3 6
1 3

)
=
(

1 0
0 1

)
so we have 3I2 congruent to I2. It follows that, up to congruence, we can replace copies of the 2 × 2 block

3I2 in the above matrix E by copies of I2, and hence when k is even A is congruent to
(
Ir

0n−r

)
and

when k is odd A is congruent to

 3
Ir−1

0n−r

. Finally, we must show that these two matrices are not

congruent. Suppose, for a contradiction, that they are. Say(
S T
U V

)t(
Ir

0

)(
S T
U V

)
=

 3
Ir−1

0n−r


where S is of size r × r. Then we have(

St U t

T t Rt

)(
S T
0 0

)
=

 3
Ir−1

0n−r


(
StS StT
T tS T tT

)
=

 3
Ir−1

0n−r


and so StS =

(
3

Ir−1

)
. This is impossible since det(StS) = (detS)2 ∈ {1, 2, 4}, but det

(
3

Ir−1

)
= 3.



4: (a) Let A =
(

1− i i
2i −1 + i

)
∈M2×2(C). Find max

|x|=1

∣∣Ax∣∣ and min
|y|=1

∣∣Ay∣∣, and find unit vectors x and y for

which these maximum and minimum values are attained.

Solution: In class, we showed how to find max
|u|=1

|L(u)| and min
|u|=1

|L(u)| when L is a linear map of finite-

dimensional vector spaces over R. The same argument applies when U and V are finite-dimensional vector
spaces over C. We find that max

|u|=1
|L(u)| = σ1 with |L(u1)| = σ1 and min

|u|=1
|L(u)| = σn with L(un) = σn

where σ1 ≤ · · · ≤ σn are the singular values of L, that is the square roots of the eigenvalues of L∗L) and
u1, · · · , un are corresponding orthonormal eigenvectors of L∗L. We have

A∗A =
(

1 + i −2i
−i −1− i

)(
1− i i

2i −1 + i

)
=
(

6 1 + 3i
1− 3i 3

)
.

The characteristic polynomial of A∗A is∣∣A∗A− tI∣∣ =
∣∣∣∣ 6− t 1 + 3i
1− 3i 3− t

∣∣∣∣ = t2 − 9t+ 8 = (t− 8)(t− 1)

so the eigenvalues of A∗A are λ1 = 8 and λ2 = 1, hence the singular values of A are σ1 = 2
√

2 and σ2 = 1.
For λ = 8 we have

A∗A− λI =
(
−2 1 + 3i

1− 3i −5

)
∼
(
−2 1 + 3i
0 0

)
so we can choose u1 = 1√

14

(
1 + 3i

2

)
as a unit eigenvector for λ1. Since the other eigenspace is orthogonal

we can, by inspection, choose u2 = 1√
14

(
2

−1 + 3i

)
as a unit eigenvector for λ2. Thus max

|x|=1

∣∣Ax| = σ1 = 2
√

2

with this maximum attained when x = u1, and min
|y|=1

∣∣Ay∣∣ = 1 with this minimum attained when y = u2.

(b) Let F = R or C. Let A ∈Mn×n(F) with A∗ = A. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A, listed
in increasing order, with repetition according to multiplicity. Show that for each k = 1, 2, · · · , n we have

λk = min
U⊂Fn,dim U=k

(
max

x∈U,|x|=1
x∗Ax

)
Solution: Since A∗ = A, we know that A is unitarily diagonalizable. Choose a basis U =

{
u1, u2, · · · , un

}
for Fn so that Aui = λiui for each i. Let U be any subspace of Fn with dimU = k. Since the dimension of
Span {uk, · · · , un} is equal to n− k + 1, the intersection U ∩ Span {uk, · · · , un} is non-trivial. Choose a unit
vector x ∈ U ∩ Span {uk, · · · , un}, say x = tkuk + · · ·+ tnun. Then

x∗Ax = (tkuk + · · ·+ tnun)∗A (tkuk + · · ·+ tnun)

=
(
tk uk

∗ + · · ·+ tn un
∗)(tkλkuk + · · ·+ tnλnun)

= λk|tk|2 + λk+1|tk+1|2 + · · ·+ λn|tn|2

≥ λk|tk|2 + λk|t2k+1|+ · · ·+ λk|tn|2

= λk

(
|tk|2 + · · ·+ |tn|2

)
= λk|x|2 = λk ,

so we have max
x∈U,|x|=1

x∗Ax ≥ λk. Since this is true for every subspace U ⊂ Cn with dimU = k, it follows

that
min

U⊂Cn,dim U=k

(
max

x∈U,|x|=1
x∗Ax

)
≥ λk .

Finally, note that for the k-dimensional subspace U = Span {u1, · · · , uk} we know that max
x∈U,|x|=1

x∗AX = λk

since for x = t1u1 + · · · tkuk with |x| = 1 we have x∗Ax = λ1|t1|2 + · · ·+λn|tn|2 ≤ λk

(
|t1|2 + · · ·+ |tn|2

)
= λk

with x∗Ax = λk when x = uk. Thus

min
U⊂Cn,dim U=k

(
max

x∈U,|x|=1
x∗Ax

)
= λk .



5: Let U and V be vector spaces over a field F with char(F) 6= 2. For u ∈ U and v ∈ V , let u ⊗ v denote the
bilinear map from U∗ × V ∗ to F given by

(u⊗ v)(f, g) = f(u)g(v)
for f ∈ U∗ and g ∈ V ∗. For u, v ∈ U let u� v and u ∧ v be the bilinear maps from U∗ × U∗ → F given by

u� v = 1
2

(
(u⊗ v) + (v ⊗ u)

)
, u ∧ v = 1

2

(
(u⊗ v)− (v ⊗ u)

)
.

Note that u� v is symmetric and u ∧ v is alternating. The tensor product of U and V is defined to be

U ⊗ V = Span
{
u⊗ v

∣∣u ∈ U, v ∈ V } ⊂ Bilin(U∗ × V ∗,F) .
We define the spaces of 2-tensors, symmetric 2-tensors, and alternating 2-tensors on U to be

T 2U = U ⊗ U
S2U =

{
S ∈ T 2U

∣∣S is symmetric
}

Λ2U =
{
A ∈ T 2U

∣∣A is alternating
}

Suppose that U and V are finite-dimensional, and let U = {u1, · · · , un} and V = {v1, · · · , vm} be bases.
(a) Show that

{
ui ⊗ vj

∣∣1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for U ⊗ V and that U ⊗ V = Bilin(U∗ × V ∗,F).

Solution: We begin by noting that for u, u1, u2 ∈ U , v, v1, v2 ∈ V and c ∈ F we have

(u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v , u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2 , (cu)⊗ v = c(u⊗ v) = u⊗ (cv) .
To prove the first of the above three equalities, note that for all f ∈ U∗ and g ∈ V ∗ we have(

(u1 + u2)⊗ v
)
(f, g) = f(u1 + u2)g(v) =

(
f(u1) + f(u2)

)
g(v) = f(u1)g(v) + f(u2)g(v)

= (u1 ⊗ v)(f, g) + (u2 ⊗ v)(f, g) =
(
(u1 ⊗ v) + (u2 ⊗ v)

)
(f, g) .

The other two equalities are proven in the same way.
Let W =

{
ui ⊗ vj

∣∣1 ≤ i ≤ n, 1 ≤ j ≤ m
}

. Since each ui ⊗ vj ∈ U ⊗ V , we have SpanW ⊂ U ⊗ V . To
show that U ⊗ V ⊂ SpanW it suffices to show that for all u ∈ U and v ∈ V we have u ⊗ v ∈ SpanW, and

indeed for u =
n∑

i=1

siui ∈ U and v =
m∑

j=1

tjvj ∈ V we have

u⊗ v =
( n∑

i=1

siui

)
⊗
( m∑

j=1

tjvj

)
=

n∑
i=1

m∑
j=1

sitj(ui ⊗ vj) ∈ SpanW .

ThusW spans U⊗V . To show thatW is linearly independent, suppose that
n∑

i=1

m∑
j=1

si,jui⊗vj = 0. This means

that
( n∑

i=1

m∑
j=1

si,jui ⊗ vj

)
(f, g) = 0 for all f ∈ U∗ and g ∈ V ∗. Let F = {f1, · · · , fn} and G = {g1, · · · , gm}

be the bases for U∗ and V ∗ which are dual to U and V. Then for 1 ≤ k ≤ n and 1 ≤ l ≤ m we have

0 =
( n∑

i=1

m∑
j=1

si,jui ⊗ vj

)
(fk, gl) = 0 =

n∑
i=1

m∑
j=1

si,j(ui ⊗ vj)(fk, gl)

=
n∑

i=1

m∑
j=1

si,jfk(ui)gl(uj) =
n∑

i=1

m∑
j=1

si,jδk,iδl,j = sk,l .

Thus W is linearly independent, and hence W is a basis for U ⊗ V .
We claim that U ⊗V = Bilin

(
U∗×V ∗,F

)
. It suffices to show that every bilinear map S : U∗×V ∗ → F

lies in U⊗V . Let S : U∗×V ∗ → F be bilinear. Recall that S is completely determined by the values S(fi, gj)

where fi ∈ F , gj ∈ G, indeed S
( n∑

i=1

sifi ,
m∑

j=1

tjgj

)
=

n∑
i=1

m∑
j=1

sitj S(fi, gj). Let T =
n∑

k=1

m∑
l=1

S(fk, gl)(uk ⊗ vl).

Note that T ∈ U ⊗ V . Also, for all fi ∈ F and gj ∈ G we have

T (fi, gj) =
n∑

k=1

m∑
l=1

S(fk, gl)(uk ⊗ vl)(fi, gj) =
n∑

k=1

m∑
l=1

S(fk, gl)δk,iδl,j = S(fi, gj) .

Since S(fi, gj) = T (fi, gj) for all fi ∈ F , gj ∈ G, we have S = T , and hence S ∈ U ⊗ V .



(b) Show that
{
ui � uj

∣∣1 ≤ i ≤ j ≤ n} is a basis for S2U .

Solution: Let W =
{
ui � uj

∣∣1 ≤ i ≤ j ≤ n}. We claim that W spans S2U . Let S ∈ S2U , that is S ∈ U ⊗U

and S is symmetric. From the last paragraph in the solution to part (a) we have S =
n∑

i=1

n∑
j=1

S(fi, fj)(ui⊗uj).

where F = {f1, · · · , fn} is the basis for U∗ which is dual to U . Also, we have S(fi, fj) = S(fj , fi) since S is
symmetric, and so

S =
∑

1≤i,j≤n

S(fi, fj)(ui ⊗ uj)

=
∑
i<j

S(fi, fj)(ui ⊗ uj) +
∑
i=j

S(fi, fj)(ui ⊗ uj) +
∑
i>j

S(fi, fj)(ui ⊗ uj)

=
∑
i<j

S(fi, fj)(ui ⊗ uj) +
∑

i

S(fi, fi)(ui ⊗ ui) +
∑
i<j

S(fj , fi)(uj ⊗ ui)

=
∑
i<j

S(fi, fj)
(
(ui ⊗ uj) + (uj ⊗ ui)

)
+
∑

i

S(fi, fi)(ui ⊗ fi)

=
∑
i<j

2S(fi, fj)(ui � uj) +
∑

i

S(fi, fi)(ui � ui)

∈ SpanW .

Next we claim that W is linearly independent. Suppose that
∑

1≤i≤j≤n

si,j(ui � uj) = 0. Then

0 =
∑
i≤j

si,j(ui � uj) =
∑
i≤j

si,j

2
(
(ui ⊗ uj) + (uj ⊗ ui)

)
=
∑
i≤j

si,j

2
(ui ⊗ uj) +

∑
i≤j

si,j

2
(uj ⊗ ui)

=
∑
i<j

si,j

2
(ui ⊗ uj) +

∑
i=j

si,j

2
(ui ⊗ uj) +

∑
i=j

si,j

2
(uj ⊗ ui) +

∑
i<j

si,j

2
(uj ⊗ ui)

=
∑
i<j

si,j

2
(ui ⊗ uj) +

∑
i

si,i(ui ⊗ ui) +
∑
i>j

sj,i

2
(ui ⊗ uj)

=
∑
i,j

ti,j(ui ⊗ uj)

where ti,j =
si,j

2
for i < j, and ti,j =

sj,i

2
for i > j, and ti,i = si,i. Since

{
ui ⊗ uj

∣∣1 ≤ i, j ≤ n
}

is linearly
independent, we must have ti,j = 0 for all 1 ≤ i, j ≤ n, and so si,j = 0 for all 1 ≤ i ≤ j ≤ n.
(c) Show that

{
ui ∧ uj

∣∣1 ≤ i < j ≤ n
}

is a basis for Λ2U .

Solution: We omit the the solution to part (c) which is very similar to the solution to part (b).


