MATH 245 Linear Algebra 2, Solutions to Assignment 6

: (a) For the quadratic curve 722 + 8xy +y? +5 = 0, find the coordinates of each vertex, find the equation of
each asymptote, and sketch the curve.

Solution: Let K(x,y) = 72? + 8xy + y>. Note that K(x,y) = (:c y)A (Z) where A = (Z ?) The

characteristic polynomial of A is

T—t 4 9
\A—m:’ A 1_t’:t—8t—9:(t—9)(t+1)
so the eigenvalues are A\; = 9 and Ay = —1. For A =9 we have
—2 4 1 -2
o= (7 5)~ (o0

= 1) for A1. The other eigenspace will be orthogonal since A

(i)

o 2
so we can choose the unit eigenvector u; = \% (

. . .. -1
is symmetric, so we can choose the unit eigenvector us = % 9 for A\y. Let P = (ul, uz) =

Sl

and let D = (g _01) Then we have P*AP = D. Write (g) :P(i) or equivalently (i) =P (;)
Then
x * S s 2 2
K(z,y)=(x y)A(y)—(s t)P AP<t>—(s t)D<t>—95 —t
and so
9 9 . t2 52 )
K =5 &= 95" —t'=-b5 <= ————=1.
(U,’U) S 5 5/9

This is the hyperbola in the st-plane with vertices at (0,++/5) and asymptotes t = +3s. We calculate
the points (z,y) corresponding to (s,t) = (0,++/5) (the vertices) and (s,t) = (v/5,43v/5) (points on the

T ) ) (0 -6)
P(5)-C D (A -()()

Thus the curve K(z,y) = —5 is a hyperbola with vertices at (z,y) = (—1,2) and (1, —2) and asymptotes
y=—xand y = —Tx.




(b) For the real quadratic form K (x,vy,2) = 322 + ay? + bz% — 6xy + 222 — 4yz, sketch the set of points (a, b)
for which K is positive-definite.

T 3 =3 1

Solution: We have K (z,y,2) = (zy z)A | y | where A= (-3 a —2 |. Note that det A™*! = det(3) = 3,
z 1 -2 b

det A¥? = det (_?é f) — 30— 9 and det A% = det A = 3ab+6+6— 12— 9b— a = 3ab— 9 — a. For K

to be positive-definite we need det A2*? > 0, that is 3¢ — 9 > 0 so a > 3 and we need det A3 > 0, that is
3ab—9b—a > 0 or equivalently 3b(a — 3) > a. For a > 3 this gives b > 3(a 3y = % + ﬁ Thus the required

set of points (a, b) lies above and to the right of the hyperbola y = 1 + —= a > 3.

b

: Let U and V be non-trivial subspaces of R™ with U NV = {0}. Recall that

angle (U, V) = min {angle (u,v)’O FuecUO0#veV}.
(a) Show that angle (U, V) = cos~!(c) where o is the largest singular value of the linear map P : U — V
given by P(z) = Projv(as).
Solution: Recall from Assignment 1 that for fixed 0 # u € R™ we have O;Iélliélv angle (u,v) = cos™! Projvﬁ .
Thus we have

1 = 1
angle (U, V) O%QU O;Térilélv angle (u,v)

= min cos™! (’PI‘OJ |)
0£uel V\“|

:cos_1< max ’PI‘OJ I ||>
0£uclU Viw

=cos " ( max |PI‘OJ )|)
uwel,|u|=1

=cos ! ( max )’)
wel,|u|= 1

=cos to

where o is the largest singular value of P.



1
(b) Let u; = _11 , Uy = 1 , U] = and vy = Let U = Span{uj,us} and V =

—_o =

1 2
Span {v1,v2}. Find angle (U, V).

Solution: To find the singular values of P we find the matrix of P* P with respect to orthonormal bases. We
apply the Gram-Schmidt Procedure to the basis {u;,u — 2} to get

O~ ~ N

1 2 1 4 3 1
Wi — s — 1 w*ufUQ.wlw* 1 7? 1 71 21 (3 71 -1
HEEE N B O e A D T N A B 3] 2|1
1 2 1 4 3 1
then we normalize to get the orthonormal basis U = {x1, 22} with
1 1
w1 1 1 wa 1 (-1
T — — = — Ty = —— — —
Pofen] 2 |- ) e 2| 2
1
Next we apply the Gram-Schmidt Procedure to {vy,v2} to get
1 2 1 1
21 =v = 1 Zpm g — 2TEL L L I R
L= = | 2T 02 BiE 1= 1 slol = |1
1 0 1 1
then we normalize to get the orthonormal basis V = {y1,ya} for V where
1 1
- Z1 - 1 1 - V) - 1 0
SR ETERRVE A WO IR GEACRVC A B
1 1
Now let .
u Tieyr T2eY1 1-1
A= |P|, = = — .
Ply (1171'92 $2'y2> 2\/3(1 3)
Then

w4 axq L (1 1 1 -1\ _ 1 /2 2\ (1 1
[PP]V—AA—IQ(_l 3)<1 3>—12(2 10 —GB,whereB—(1 5).

The characteristic polynomial of B is
(1=t 1\,
|B—tI| = ( L 5_t) =1°—6t+4
so B has eigenvalues A = % =3++/5. Since A*A = %B, the eigenvalues of A*A, or equivalently the
eigenvalues of P*P, are % Thus the largest singular value of P is o = 4/ % and we obtain

angle (U, V) = cos™ ' 4/ 3+T‘/5 .



3: Let F = Z~, the field of integers modulo 7.
2 1 5
() Let A= |1 4 3| € M3x3(F). Find Q € GL(3,F) such that Q' AQ is diagonal.
5 3 0

Solution: We use column and row operations to put A into diagonal form. At each stage we indicate the
operations used and give the elementary matrix for the column operations.

2 0 5 2 0 5 1 3 0
Cy— Cy + 3C, 1 0 3 Ro+— Ro 4+ 3R, 0 0 4 EFr=10 1 0
5 4 0 5 4 0 0 0 1
2 0 0 2 00 1 0 1
Cs— O3+ C1 0 0 4 Rs+— Rs+ Ry 0 0 4 Eo=10 1 0
5 4 5 0 4 5 0 0 1
2 0 0 2 00 1 0 0
Cy— Cy+ Cs 0 4 4 Ry +— Ry + R 0 6 2 Es=10 10
0 2 5 0 2 5 0 1 1
2 0 0 2 0 0 1 0 0
C3— C3+2Cy 0 6 O R3+— R34+ 2R, 0 6 O E,=10 1 2
0 2 2 0 0 2 0 0 1
Thus we can take

0 0 1 0 0

Q= E\EyE3Ey = 1 0 01 2

0 0 0 1

S O =
S O =
S = W
S O = ~

== s O O =
wWwNoN R =O



(b) Find the number of distinct congruence classes of 3 x 3 symmetric matrices over F.

Solution: We claim that there are 7 congruence classes. Indeed we claim more generally that for each positive
integer n there are 2n + 1 congruence classes of symmetric n x n matrices over F. There is only one n x n
matrix with rank zero, namely the zero matrix. We shall show that for 1 < r < n, every symmetric n X n
matrix of rank r over F is congruent to exactly one of the two matrices

(")
0 ) ) ];—1
e On—r

Let 1 <7 < nandlet A € M,x,(F) with A® = A and rank(4) = r. We know that A is congruent
to a diagonal matrix D = diag(dy,---,d,). Note that exactly r of the entries d; will be non-zero since
rank(D) = rank(A) = r. In F = Z7 we have the following table of squares.

z 01 2 3 4 5 6

22 01 4 2 2 41
We group the non-zero elements into two types, the squares {1,2,4} and the non-squares {3,5,6}. Using
the column and row operations C; < C;, R; <+ R; we can rearrange the entries d; of D. We order them so
that dy,---,dgx € {3,5,6}, di+1,--+,d, € {1,2,4} and dy41,---,d,, = 0. Define f : F — F by

T 01 2 3 45 6

flz) 11 21 3 3 2

so that we have
3 for x € {3,5,6}

xf(z)? =< 1forx € {1,2,4}
0forz=0

and let @ be the diagonal matrix @ = diag(f(d1),- -, f(dn)). Note that @Q is invertible since each f(d;) # 0,
and A is congruent to the matrix

E = Q'DQ = diag(di f(d1)%, -+, dnf(dn)?)
= diag(3,---,3,1,---,1,0,---,0)
31

GHEHED-CDEH-6)

so we have 3I5 congruent to Is. It follows that, up to congruence, we can replace copies of the 2 x 2 block

Next we note that

. . . . . 1,
315 in the above matrix E by copies of Is, and hence when k is even A is congruent to < " 0 ) and
n—r

3
when k is odd A is congruent to I . Finally, we must show that these two matrices are not
On—r
congruent. Suppose, for a contradiction, that they are. Say

GOCED( e

where S is of size r x r. Then we have

St U\ /(S T 3
T Rt)\0 0)" I
On—r

3
t t
(SS ST): I,
0

n—r

TS T'T

3

tq _
and so S*S = ( I,

). This is impossible since det(S*S) = (det S)? € {1,2,4}, but det (3 I ) =3.
r—1



4: (a) Let A =

1—1 )
21 —1-+14
which these maximum and minimum values are attained.

) € Myy2(C). Find |m|a>§ ’Ax‘ and |rr‘1in1 ‘Ay
T|= Yy|l=

, and find unit vectors = and y for

Solution: In class, we showed how to find Im‘mi |L(u)| and IHFHI |L(uw)| when L is a linear map of finite-

dimensional vector spaces over R. The same argument applies when U and V are finite-dimensional vector
spaces over C. We find that max |L(u)| = o1 with |L(u1)| = o1 and min |L(u)| = o, with L(u,) = o,

lul=1 lul=1
where 01 < .-+ < g, are the singular values of L, that is the square roots of the eigenvalues of L*L) and
Uy, -, U, are corresponding orthonormal eigenvectors of L*L. We have

e (141 =2 1—1 i _ 6 1+3i
AA_(—i —1—i>( 2i —1—|—z’>_<1—3i 3 >
The characteristic polynomial of A*A is

6—-t 143
1-37 3t

so the eigenvalues of A*A are \; = 8 and Ay = 1, hence the singular values of A are o; = 2v/2 and oy = 1.
For A = 8 we have
N _ -2 143 -2 1+4+3i
AA_M_(131' 5>N(o 0 )

1 [143i
so we can choose u; = i 5

|A*A —tI| = =12 - 9t+8=(t—8)(t—1)

> as a unit eigenvector for A;. Since the other eigenspace is orthogonal

we can, by inspection, choose us = ﬁ < 2 > as a unit eigenvector for \o. Thus max |Aac| =0 =2V2
=1

-1+ 3 ||

with this maximum attained when z = uy, and ln‘lin ‘Ay‘ = 1 with this minimum attained when y = us.
y|l=1
(b) Let F=Ror C. Let A € M« (F) with A* = A. Let Ay < Ay <--- < A, be the eigenvalues of A, listed
in increasing order, with repetition according to multiplicity. Show that for each £ =1,2,---,n we have
AL = min ( max z*A :E)

UCF" ,dimU=k \ zeU,|z|=1
Solution: Since A* = A, we know that A is unitarily diagonalizable. Choose a basis U = {uhug, e ,un}
for F™ so that Au; = A\;u; for each i. Let U be any subspace of F" with dim U = k. Since the dimension of
Span {ug, -, u,} is equal to n — k + 1, the intersection U N Span {ug, - - -, u, } is non-trivial. Choose a unit

vector x € U N Span {ug, -+, un}, say © = tpug + -+ - + tpu,. Then
¥ Ax = (trug + - -+ thun) A (tgug + - - + thuy)
= (Tewp™ + -+l wy ) (e Aeur + - 4t Anuy,)
= Meltrl? + Megiltroat >+ -+ Anltn?
> Aeltel® + Meltipr] + -+ Ailtn]?
= A ([tel® + -+ [tal?) = Az = A
so we have max x"Ax > M. Since this is true for every subspace U C C" with dimU = k, it follows

zeU,|z|=1
that
min ( max x*Ax) > N\
UcCCn,dimU=k \ zeU,|z|=1
Finally, note that for the k-dimensional subspace U = Span {u1, - - -, ux} we know that max z*AX = )

zeU,|z|=1
since for & = tjuy +- - - tpuy with |z| = 1 we have 2* Az = A\ [t1]?> +- -+ A |tn|? < )\k(|t1\2 4 \tn|2) =\
with 2* Az = A\, when z = uy. Thus

min ( max x*A:E) = A
UcCCn,dimU=k \zeU,|z|=1



5: Let U and V' be vector spaces over a field F with char(F) # 2. For u € U and v € V, let v ® v denote the
bilinear map from U* x V* to F given by

(uw@)(f,9) = f(u)g(v)
for f e U* and g € V*. For u,v € U let u ® v and u A v be the bilinear maps from U* x U* — F given by

uov=1((u®v)+(weu), uAv=3((tev)—(veu)).
Note that u ® v is symmetric and u A v is alternating. The tensor product of U and V is defined to be
U®V =Span{u®v|uecUweV}CBilin(U* x V¥ F).

We define the spaces of 2-tensors, symmetric 2-tensors, and alternating 2-tensors on U to be

T’U=U®U

S2U = {S e T?U | S is symmetric}

AU = {A e T?U | Ais alternating}
Suppose that U and V are finite-dimensional, and let & = {uy, -, u,} and V = {vy, -+, v} be bases.
(a) Show that {ui ® vj‘l <i<n1<35< m} is a basis for U ® V and that U ® V = Bilin(U* x V*,F).
Solution: We begin by noting that for u,ui,us € U, v,v1,v2 € V and ¢ € F we have

(U1 +u2) @V=u @V4+u®v, u WV +v) =uRV +uuvy, (cu)@v=clu®v)=u® (cw).
To prove the first of the above three equalities, note that for all f € U* and g € V* we have
((u1 +uz) ®v)(f,9) = flur +u2)g(v) = (f(wr) + f(u2))g(v) = f(ur)g(v) + f(u2)g(v)
= (u1 ®0)(f,9) + (u2 ®v)(f.9) = (11 ® v) + (u2 @ v))(f, 9).

The other two equalities are proven in the same way.
Let W = {u; ® v;|1 <i < n,1<j<m}. Since each u; ® v; € U® V, we have SpanW C U ®@ V. To
show that U ® V C Span W it sufﬁces to show that for all w € U and v € V we have u ® v € Span W, and

1ndeedf0ru-25ulEUandv—EtUJEVWehave
i=1 j=

URV = (;::1 sluz> ® (ji::ltjvj) = ;Z: i:: tj(u; ® v;) € SpanW.

Thus W spans U®V'. To show that W is linearly independent, suppose that >~ >~ s; ju;®v; = 0. This means
i=1j=1

that (3 Y sijus ©v;)(f,9) =0 for all f € U* and g € V*. Let F = {fi,+, fu} and G = {g1,"" g}
i=1j=1
be the bases for U* and V* which are dual to & and V. Then for 1 <k <n and 1 <[ < m we have

0= (% & suov)(fua) =0=3 isi,j<ui®vj><fk,gl>

1j=
Z i fe(ui)gi(ug) = Z E 8i,j0k,i01j = Sk, -
=1 ==
Thus W is linearly 1ndependent and hence W is a basis for U @ V.
We claim that U@V = Blhn(U* x V* ) It suffices to show that every bilinear map S : U* x V* — F

liesin U®V. Let S : U* xV* — F be bilinear. Recall that S is completely determlned by the values S(fi, g5)
where f; € F, g; € G, indeed S(Zszfl, thgj) Z Zst S(fisg;). Let T = Z ZS(fk,gl)(uk®vl)

=1 1=1j=
Note that T'e U ® V. Also, for all f; € .7: and g; € G we have

T(firg;) = z 52 S (o a0) (ke © 1) (Fir g5) = i 52 S(fir 91)0k.015 = S(fir 05) -

—11=1 k=11=1
Since S(fi,g;) = T(fl,g]) for all f; € F, g;j € G, we have S =T, and hence S e U Q@ V.

\\Mz



(b) Show that {uz @uj‘l <i<j< n} is a basis for S2U.

Solution: Let W = {ui @uj‘l <i<j< n} We claim that W spans S2U. Let S € S?U, thatis S e U ®@ U
and S is symmetric. From the last paragraph in the solution to part (a) we have S = Z Z S(fi, i) (u; @uy).
where F = {f1,---, fu} is the basis for U* which is dual to U. Also, we have S(f;, }]) ~ S(f;, fi) since S is
symmetric, and so

S= > S(fufi)(w©uy)

1<i,5<n

725]015]0] Uz®uj +Zsflﬂfj Uz®uj +Zsfufj Uz®u3)
1<J 1>7

_Zsfufj Uz®uj +Zsfuf1 Uz®uz +ZSf]>fl uy®uz)
i<j 1<j

=" S(fi, £7) (i @ uy) + (uj ® ;) +ZS<fi,fi )(ui ® f;)
1<j )

_ZQS f’b?fj (uz®u] +ZS fzafz UzQUz)
1<j

€ SpanW.

Next we claim that W is linearly independent. Suppose that Z sij(u; ©® u;) = 0. Then

1<i<j<n
O—Zs”uz(auj Z 5

2 ((u; ® ug) + (u; @ uy))

i<j i<j
S Py
= ;J(ui®uj)+2%(uj®ui)
i<j i<j
_Z ’J (u; ® uj) —|—Z ’J (u; ® uj) —|—Z ’J (u; ® u;) —|—Z ’J (u; ® u;)
1<j i<j
S;
*Z ” ul®uj +Zs“ul®uz +Z “ ul®uJ
i<j >]

=)t (s @ uy)
i

Si.4 . . S
L for i < j, and t; ; = 2

j, and t;; = s;,;. Since {uZ ® uj|1 <1,5 < n} is linearly

where ti,j =
independent, we must have ¢; ; =0 for all 1 <4,j <n,andsos;; =0forall 1 <i¢<j<n.
(c) Show that {u; A uj|1 <i<j<n} is a basis for A2U.

Solution: We omit the the solution to part (c) which is very similar to the solution to part (b).



