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Math 247, Fall Term 2011

Homework Assignment 1

Handed out on Wednesday, September 14; due on Wednesday, September 21

In Problem 1, let ~x and ~y be two non-zero vectors in Rn. We consider the Cauchy-
Schwarz inequality that was proved in class (Proposition 1.3):

(C-S) | 〈~x , ~y 〉 | ≤ || ~x || · || ~y ||.

Problem 1. In the conditions described above, prove the following equivalence:(
(C-S) holds with

equality

)
⇔

(
∃α ∈ R \ {0} such that ~y = α~x

)
.

For Problem 2 recall that besides the “usual” norm || ~x || of a vector ~x ∈ Rn we have
also introduced the “1-norm” and the “∞-norm” of ~x. They are defined by

|| ~x ||1 :=
n∑

i=1

|x(i) | and || ~x ||∞ := max{ |x(1) |, |x(2) |, . . . , |x(n) | },

where x(1), . . . , x(n) are the components of ~x.

Problem 2. Prove that for every ~x ∈ Rn one has the following inequalities:

|| ~x ||∞ ≤ || ~x || ≤ || ~x ||1 ≤ n · || ~x ||∞.

Problem 3 asks you to prove an inequality satisfied by linear transformations. Let
M = [ai,j ]i,j be an m×n matrix with real entries. Recall from Math 146 that one associates
to M a linear transformation TM : Rn → Rm defined as follows: if ~x = (x(1), . . . , x(n) ) ∈ Rn,
then TM ( ~x ) := ~y = ( y(1), . . . , y(m) ) ∈ Rm, where we put

y(i) =

n∑
j=1

ai,jx
(j), ∀ 1 ≤ i ≤ m.

In other words: we have the formula “TM ( ~x ) = M ·~x ”, where we view ~x as an n×1 matrix
and we use the rules for matrix multiplication.

Problem 3. Let M be as above, and consider the number C :=
√∑m

i=1

∑n
j=1 a

2
i,j .

Prove that the linear transformation TM : Rn → Rm satisfies the following inequality:

||TM ( ~x )|| ≤ C · || ~x ||, ∀ ~x ∈ Rn.
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Problem 4. Write the proof for Proposition 2.5 in Lecture 2. The proposition stated
that for a sequence ( ~xk )∞k=1 in Rn we have the following equivalence:

(
( ~xk )∞k=1 is Cauchy

in Rn

)
⇔

 each of the component sequences

(x
(1)
k )∞k=1, . . . , (x

(n)
k )∞k=1

is Cauchy in R

 .

Problem 5. Let ( ~yk )∞k=1 be a sequence in Rn, and suppose that
∑∞

k=1 || ~yk || < ∞
(where this infinite sum of non-negative real numbers is considered in the sense discussed
in Math 148). For every k ≥ 1 consider the vector ~sk := ~y1 + ~y2 + · · ·+ ~yk ∈ Rn. Prove that
(~sk)∞k=1 is a convergent sequence in Rn.

[Note: In the context of Problem 5, one says that the series
∑∞

k=1 ~yk is absolutely convergent
in Rn. The limit limk→∞ ~sk is said to be the sum of this infinite series.]

Problem 6. (a) Let ( ~xk )∞k=1 be a sequence in Rn, and suppose there exist constants
c ∈ (0,∞) and γ ∈ (0, 1) such that

|| ~xk − ~xk+1 || < c · γk, ∀ k ≥ 1. (1)

Prove that the sequence ( ~xk )∞k=1 is convergent.
(b) Suppose the condition from Equation (1) of part (a) is replaced by

|| ~xk − ~xk+1 || < 1/k2, ∀ k ≥ 1. (2)

Can one still conclude that the sequence ( ~xk )∞k=1 is convergent? Justify your answer (proof
or counterexample).

For Problem 7 recal that the closed ball centered at ~a ∈ Rn and of radius r > 0 is
denoted as B(~a; r) and is defined like this: B(~a; r) := {~x ∈ Rn | || ~x− ~a|| ≤ r}.

Problem 7. In this problem (~ak )∞k=1 is a sequence of vectors in Rn and r1, r2, . . . , rk, . . .
are strictly positive numbers with limk→∞ rk = 0. Suppose that the closed balls B(~ak ; rk)
are nested inside each other, in the sense that we have the inclusions:

B(~a1 ; r1) ⊇ B(~a2 ; r2) ⊇ · · · ⊇ B(~ak ; rk) ⊇ · · ·

(a) Prove that the sequence (~ak )∞k=1 is convergent.

(b) Let ~a := limk→∞~ak. Prove that ~a ∈ ∩∞k=1B(~ak ; rk).

(c) Could the intersection of closed balls ∩∞k=1B(~ak ; rk) contain some other vector,
besides the vector ~a from part (b) of the problem? Justify your answer (proof or counterex-
ample).


