Math 247, Fall Term 2011

Homework Assignment 1

Handed out on Wednesday, September 14; due on Wednesday, September 21

In Problem 1, let \vec{x} and \vec{y} be two non-zero vectors in \mathbb{R}^n . We consider the Cauchy-Schwarz inequality that was proved in class (Proposition 1.3):

(C-S)
$$|\langle \vec{x}, \vec{y} \rangle| \leq ||\vec{x}|| \cdot ||\vec{y}||.$$

Problem 1. In the conditions described above, prove the following equivalence:

$$\left(\begin{array}{c} \text{(C-S) holds with} \\ \text{equality} \end{array}\right) \Leftrightarrow \left(\exists \, \alpha \in \mathbb{R} \setminus \{0\} \text{ such that } \vec{y} = \alpha \vec{x}\right).$$

For Problem 2 recall that besides the "usual" norm $||\vec{x}||$ of a vector $\vec{x} \in \mathbb{R}^n$ we have also introduced the "1-norm" and the " ∞ -norm" of \vec{x} . They are defined by

$$||\vec{x}||_{1} := \sum_{i=1}^{n} |x^{(i)}| \text{ and } ||\vec{x}||_{\infty} := \max\{|x^{(1)}|, |x^{(2)}|, \dots, |x^{(n)}|\}$$

where $x^{(1)}, \ldots, x^{(n)}$ are the components of \vec{x} .

Problem 2. Prove that for every $\vec{x} \in \mathbb{R}^n$ one has the following inequalities:

$$||\vec{x}||_{\infty} \le ||\vec{x}|| \le ||\vec{x}||_1 \le n \cdot ||\vec{x}||_{\infty}.$$

Problem 3 asks you to prove an inequality satisfied by linear transformations. Let $M = [a_{i,j}]_{i,j}$ be an $m \times n$ matrix with real entries. Recall from Math 146 that one associates to M a linear transformation $T_M : \mathbb{R}^n \to \mathbb{R}^m$ defined as follows: if $\vec{x} = (x^{(1)}, \ldots, x^{(n)}) \in \mathbb{R}^n$, then $T_M(\vec{x}) := \vec{y} = (y^{(1)}, \ldots, y^{(m)}) \in \mathbb{R}^m$, where we put

$$y^{(i)} = \sum_{j=1}^{n} a_{i,j} x^{(j)}, \quad \forall 1 \le i \le m.$$

In other words: we have the formula " $T_M(\vec{x}) = M \cdot \vec{x}$ ", where we view \vec{x} as an $n \times 1$ matrix and we use the rules for matrix multiplication.

Problem 3. Let M be as above, and consider the number $C := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i,j}^2}$. Prove that the linear transformation $T_M : \mathbb{R}^n \to \mathbb{R}^m$ satisfies the following inequality:

$$||T_{_M}(\,\vec{x}\,)|| \leq C \cdot ||\,\vec{x}\,||, \ \, \forall\,\vec{x}\in\mathbb{R}^n.$$

Problem 4. Write the proof for Proposition 2.5 in Lecture 2. The proposition stated that for a sequence $(\vec{x}_k)_{k=1}^{\infty}$ in \mathbb{R}^n we have the following equivalence:

$$\left(\begin{array}{c} (\vec{x}_k)_{k=1}^{\infty} \text{ is Cauchy} \\ \text{ in } \mathbb{R}^n \end{array}\right) \Leftrightarrow \left(\begin{array}{c} \text{ each of the component sequences} \\ (x_k^{(1)})_{k=1}^{\infty}, \dots, (x_k^{(n)})_{k=1}^{\infty} \\ \text{ is Cauchy in } \mathbb{R} \end{array}\right)$$

Problem 5. Let $(\vec{y}_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n , and suppose that $\sum_{k=1}^{\infty} ||\vec{y}_k|| < \infty$ (where this infinite sum of non-negative real numbers is considered in the sense discussed in Math 148). For every $k \ge 1$ consider the vector $\vec{s}_k := \vec{y}_1 + \vec{y}_2 + \cdots + \vec{y}_k \in \mathbb{R}^n$. Prove that $(\vec{s}_k)_{k=1}^{\infty}$ is a convergent sequence in \mathbb{R}^n .

[Note: In the context of Problem 5, one says that the series $\sum_{k=1}^{\infty} \vec{y}_k$ is absolutely convergent in \mathbb{R}^n . The limit $\lim_{k\to\infty} \vec{s}_k$ is said to be the sum of this infinite series.]

Problem 6. (a) Let $(\vec{x}_k)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n , and suppose there exist constants $c \in (0, \infty)$ and $\gamma \in (0, 1)$ such that

$$||\vec{x}_k - \vec{x}_{k+1}|| < c \cdot \gamma^k, \quad \forall k \ge 1.$$
 (1)

Prove that the sequence $(\vec{x}_k)_{k=1}^{\infty}$ is convergent.

(b) Suppose the condition from Equation (1) of part (a) is replaced by

$$|\vec{x}_k - \vec{x}_{k+1}|| < 1/k^2, \quad \forall k \ge 1.$$
 (2)

Can one still conclude that the sequence $(\vec{x}_k)_{k=1}^{\infty}$ is convergent? Justify your answer (proof or counterexample).

For Problem 7 recal that the *closed ball* centered at $\vec{a} \in \mathbb{R}^n$ and of radius r > 0 is denoted as $\overline{B}(\vec{a};r)$ and is defined like this: $\overline{B}(\vec{a};r) := \{\vec{x} \in \mathbb{R}^n \mid ||\vec{x} - \vec{a}|| \le r\}.$

Problem 7. In this problem $(\vec{a}_k)_{k=1}^{\infty}$ is a sequence of vectors in \mathbb{R}^n and $r_1, r_2, \ldots, r_k, \ldots$ are strictly positive numbers with $\lim_{k\to\infty} r_k = 0$. Suppose that the closed balls $\overline{B}(\vec{a}_k; r_k)$ are *nested* inside each other, in the sense that we have the inclusions:

$$\overline{B}(\vec{a}_1;r_1) \supseteq \overline{B}(\vec{a}_2;r_2) \supseteq \cdots \supseteq \overline{B}(\vec{a}_k;r_k) \supseteq \cdots$$

(a) Prove that the sequence $(\vec{a}_k)_{k=1}^{\infty}$ is convergent.

(b) Let $\vec{a} := \lim_{k \to \infty} \vec{a}_k$. Prove that $\vec{a} \in \bigcap_{k=1}^{\infty} \overline{B}(\vec{a}_k; r_k)$.

(c) Could the intersection of closed balls $\bigcap_{k=1}^{\infty} \overline{B}(\vec{a}_k; r_k)$ contain some other vector, besides the vector \vec{a} from part (b) of the problem? Justify your answer (proof or counterexample).