Math 247, Fall Term 2011

Homework assignment 4

Posted on Wednesday, October 5; due on Wednesday, October 12

Problem 1. Let A be a nonempty subset of \mathbb{R}^n and let $f : A \to \mathbb{R}^m$ be a function. Let B be a subset of \mathbb{R}^m such that $f(A) \subseteq B$, and let $g : B \to \mathbb{R}^p$ be a function. Consider the composed function $h = g \circ f$; that is, $h : A \to \mathbb{R}^p$ is defined by putting $h(\vec{x}) = g(f(\vec{x}))$ for every $\vec{x} \in A$. Suppose that f is uniformly continuous on A and g is uniformly continuous on B. Does it follow that h is uniformly continuous on A? Justify your answer (proof or counterexample).

In Problems 2-4 we will use the following definition.

Definition. Let A be a nonempty subset of \mathbb{R}^n .

1° Let \vec{x} be a vector in \mathbb{R}^n . The distance from \vec{x} to A is the real non-negative number $d_A(\vec{x})$ defined as follows:

$$d_A(\vec{x}) := \inf\{ || \vec{x} - \vec{a} || | \vec{a} \in A \}.$$

 2^{o} When the vector \vec{x} from part 1^{o} of the definition is allowed to run in \mathbb{R}^{n} , we obtain a function $d_{A}: \mathbb{R}^{n} \to \mathbb{R}$. We will refer to it by calling it the *distance-to-A* function.

Problem 2. Let A be a nonempty subset of \mathbb{R}^n and let \vec{x} be a vector in \mathbb{R}^n . Prove the following equivalence:

$$\left(\, d_{\scriptscriptstyle A}(\, \vec{x}\,) = 0 \, \right) \Leftrightarrow \Big(\, \vec{x} \in \operatorname{cl}(A) \, \Big).$$

Problem 3. Let A be a nonempty subset of \mathbb{R}^n .

(a) Prove that for every \vec{x} and \vec{y} in \mathbb{R}^n one has the inequality

$$d_A(\vec{x}) \le d_A(\vec{y}) + ||\vec{x} - \vec{y}||.$$

(b) Prove that the distance-to-A function $d_A : \mathbb{R}^n \to \mathbb{R}$ is a Lipschitz function. (The concept of Lipschitz function was defined in homework assignment 3.)

The following problem is an application of distance functions (it is recommended that you find the function f required in the problem by using a formula based on d_A and d_B).

Problem 4. Let A and B be closed nonempty subsets of \mathbb{R}^n , such that $A \cap B = \emptyset$. Prove that there exists a continuous function $f : \mathbb{R}^n \to \mathbb{R}$ which has the following properties:

- (i) $0 \le f(\vec{x}) \le 1$, for every $\vec{x} \in \mathbb{R}^n$;
- (ii) $f(\vec{x}) = 0$ for every $\vec{x} \in A$; and
- (iii) $f(\vec{x}) = 1$ for every $\vec{x} \in B$.

For Problems 5-7, recall the following notations (that were introduced in class, in Lecture 6). Let A be a subset of \mathbb{R}^n and let $f : A \to \mathbb{R}$ be a bounded function. For a nonempty subset B of A we denote

$$\sup_{B} (f) := \sup\{f(\vec{x}) \mid \vec{x} \in B\}, \qquad \inf_{B} (f) := \inf\{f(\vec{x}) \mid \vec{x} \in B\}, \\ B$$

and we also use the notation

$$\operatorname{osc} (f) := \sup (f) - \inf (f).$$

$$B \qquad B \qquad B$$

Problem 5. Let A be a subset of \mathbb{R}^n , let $f : A \to \mathbb{R}$ be a bounded function, and let B be a nonempty subset A. Prove that

osc
$$(f) = \sup\{ |f(\vec{x}) - f(\vec{y})| | \vec{x}, \vec{y} \in B \}.$$

B

Problem 6. Let A be a subset of \mathbb{R}^n , let $f : A \to \mathbb{R}$ be a bounded function, and let B, C be nonempty subsets A such that $C \subseteq B$. Prove the following inequalities:

(a)
$$\sup_{C} (f) \leq \sup_{B} (f)$$
. (b) $\inf_{C} (f) \geq \inf_{C} (f)$. (c) $\operatorname{osc}_{C} (f) \leq \operatorname{osc}_{C} (f)$.

Problem 7. Let A be a subset of \mathbb{R}^n and let $f : A \to \mathbb{R}$ be a bounded function. We fix a point $\vec{a} \in A$, and for every positive integer k we denote $N_k = A \cap B(\vec{a}; 1/k)$. Prove the following equivalence:

$$\left(\begin{array}{c} f \text{ is continuous} \\ \text{at } \vec{a} \end{array}\right) \Leftrightarrow \left(\lim_{k \to \infty} \left(\begin{array}{c} \text{osc } (f) \right) = 0\right).$$