Math 247, Fall Term 2011

Homework assignment 6

Posted on Wednesday, November 2; due on Wednesday, November 9

Problem 1. Let A be the bounded subset of \mathbb{R}^2 defined as follows:

$$A := \{ (s, t) \in (0, 1] \times (0, 1] \mid s \le t \}.$$

Consider the function $f: A \to \mathbb{R}$ defined by $f((s,t)) := \sin(t^2)$, for $(s,t) \in A$.

- (a) Prove that bd(A) is a null set of \mathbb{R}^2 .
- (b) Prove that the function f is integrable on A.
- (c) By appropriately using the theorem of Fubini, calculate the integral $\int_A f$.

Problem 2. Let A be the bounded subset of \mathbb{R}^3 defined as follows:

$$A = \left\{ (x, y, z) \in \mathbb{R}^3 \mid 0 < x \le 1, \ 0 < y \le 1 - x^2, \ 0 < z \le x^2 + y \right\}.$$

Consider the function $f : A \to \mathbb{R}$ defined by f((x, y, z)) := y, for $(x, y, z) \in A$. We accept the fact f is integrable on A, and that the hypotheses of the theorem of Fubini are satisfied. By using the theorem of Fubini, calculate $\int_A f$.

Problem 3 shows an example of a function where hypothesis (ii) in the theorem of Fubini is satisfied, even though the hypothesis (i) is not. (Moral of this example: just knowing that it makes sense to talk about the iterated integral $\int_0^1 \left(\int_0^1 f((s,t)) dt \right) ds$ will not automatically imply that f is integrable on $(0,1] \times (0,1]$.)

Problem 3. In this problem we accept the fact that the rational numbers can be enumerated as a sequence. We fix one of the possible ways of doing such an enumeration for the set of rationals in (0, 1]:

 $\mathbb{Q} \cap (0,1] = \{q_1, q_2, \dots, q_n, \dots\}, \text{ where } q_m \neq q_n \text{ for } m \neq n.$

Define a function $f: (0,1] \times (0,1] \to \mathbb{R}$ by the following formula:

$$f((s,t)) = \begin{cases} 1, & \text{if } s = q_n \text{ and } t = q_m \text{ with } n \ge m \\ 0, & \text{otherwise.} \end{cases}$$

(a) Prove that the function f is not integrable on $(0, 1] \times (0, 1]$.

(b) For every $s \in (0,1]$ let $f_s : (0,1] \to \mathbb{R}$ be the partial function defined by $f_s(t) = f((s,t)), 0 < t \leq 1$. Prove that every f_s is integrable, and that it makes sense to talk about the integral $\int_0^1 \left(\int_0^1 f_s(t) dt\right) ds$.

Problems 4–6 are geared towards calculating the volume of the standard simplex in \mathbb{R}^n .

Problem 4. (a) Let $P = (a_1, b_1] \times \cdots \times (a_n, b_n]$ be a half-open rectangle in \mathbb{R}^n . Let $\alpha > 0$ be a real number, and consider the new rectangle

$$Q = (\alpha a_1, \alpha b_1] \times \cdots \times (\alpha a_n, \alpha b_n] \subseteq \mathbb{R}^n$$

Let $f: P \to \mathbb{R}$ be a bounded function, and let us define $g: Q \to \mathbb{R}$ by putting

$$g(\vec{y}) := f(\frac{1}{\alpha}\vec{y}), \quad \forall \vec{y} \in Q.$$

Prove that

$$\overline{\int_Q} g = \alpha^n \overline{\int_P} f$$
 and that $\underline{\int_Q} g = \alpha^n \underline{\int_P} f$.

(b) In the setting of part (a) of the problem, let us assume that the function f is integrable on P. Prove that g is integrable on Q, with $\int_Q g = \alpha^n \int_P f$.

Problem 5. Let A be a bounded non-empty subset of \mathbb{R}^n , let $\alpha > 0$ be a real number, and consider the set

$$B := \{ \alpha \, \vec{a} \mid \vec{a} \in A \} \subseteq \mathbb{R}^n.$$

Suppose that the set A has volume (in the sense of the definition given in homework assignment 5"). Prove that the set B has volume, and that $vol(B) = \alpha^n \cdot vol(A)$.

Definition. Let n be a positive integer. The set

$$S_n := \left\{ \vec{x} = \left(x^{(1)}, \dots, x^{(n)} \right) \in \mathbb{R}^n \mid \begin{array}{c} x^{(1)}, \dots, x^{(n)} \ge 0 \text{ and} \\ x^{(1)} + \dots + x^{(n)} \le 1 \end{array} \right\}$$

is called the *standard simplex* in \mathbb{R}^n .

We accept the fact that, for every $n \ge 1$, the standard simplex S_n is a subset of \mathbb{R}^n which has volume. Let V_n denote the volume of S_n .

Problem 6. Let S_n and V_n be as above. We accept the fact that the hypotheses of Fubini's theorem are satisfied in connection to the calculation of the volume V_n .

(a) Determine the values of V_1 and of V_2 (it is accepted to do this by using basic geometry).

- (c) By using the theorem of Fubini, prove that $V_{n+1} = V_n/(n+1), \forall n \ge 2$.
- (d) Give a general formula for V_n , $n \ge 1$.