Math 247, Fall Term 2011

Homework assignment 5"

Posted on Wednesday, October 26; due on Wednesday, November 2

Problem 1 fills in a detail that remained from Lecture 10, in connection to the operation of taking the absolute value of a function. In your solution to Problem 1 you are allowed to use (without proof) the following elementary inequality satisfied by the absolute value function: one has

$$
(*) \qquad |s| - |t| \leq |s - t|, \quad \forall s, t \in \mathbb{R}.
$$

Problem 1. Let P be a half-open rectangle in \mathbb{R}^n , and let $f: P \to \mathbb{R}$ be a function. Consider the new function $|f|: P \to \mathbb{R}$ which is defined by the formula

$$
|f|(\vec{x}) := |f(\vec{x})|, \ \ \vec{x} \in P.
$$

(a) Suppose that f is bounded. Prove that $|f|$ is bounded as well, and that

$$
\operatorname*{osc}_{A}(|f|) \leq \operatorname*{osc}_{A}(f), \quad \text{for every nonempty subset } A \subseteq P.
$$

(b) Suppose that $f \in \text{Int}_b(P, \mathbb{R})$ (i.e, f is bounded and integrable on P). Prove that $|f| \in \text{Int}_b(P, \mathbb{R})$ as well.

Problems 2 and 3 are about integrals on bounded subsets of \mathbb{R}^n , as discussed in class in Lecture 11.

Problem 2. Let A_1, \ldots, A_r be nonempty bounded subsets of \mathbb{R}^n such that $A_i \cap A_j = \emptyset$ for $i \neq j$. Suppose that for every $1 \leq i \leq r$ we are given a function $f_i \in \text{Int}_b(A_i, \mathbb{R})$ (that is, $f_i: A_i \to \mathbb{R}$ is bounded and integrable). Let $A := A_1 \cup \cdots \cup A_r$ and let $f: A \to \mathbb{R}$ be the function which is obtained by patching together the functions f_1, \ldots, f_r (that is, $f(\vec{x}) = f_i(\vec{x})$ for every $\vec{x} \in A_i$, $1 \leq i \leq r$). Prove that $f \in \text{Int}_b(A, \mathbb{R})$, and that

$$
\int_A f = \int_{A_1} f_1 + \dots + \int_{A_r} f_r.
$$

Definition. Let A be a bounded subset of \mathbb{R}^n . We say that A has volume when the constant function $1: A \to \mathbb{R}$ is integrable on A; if this is the case, then we define the volume of A by the formula

$$
\text{vol}(A) := \int_A 1.
$$

Remark. 1^o Let $P = (a_1, b_1] \times \cdots \times (a_n, b_n]$ be a half-open rectangle in \mathbb{R}^n . It was observed in class (Lecture 10) that constant functions are integrable on P, and that

$$
\int_P 1 = \text{vol}(P) = (b_1 - a_1) \cdots (b_n - a_n).
$$

Hence P has volume in the sense of the above definition. Moreover, the formula for volume given in the above definition agrees with the "usual" formula defining the volume of P.

2^o Let A be a bounded subset of \mathbb{R}^n , and let P be a half-open rectangle such that $A \subseteq P$. Consider the indicator function of A relative to P, that is, the function $I_A: P \to \mathbb{R}$ which is defined by

$$
I_A(\vec{x}) := \begin{cases} 1, & \text{if } \vec{x} \in A \\ 0, & \text{if } \vec{x} \in P \setminus A. \end{cases}
$$

In view of how integrals on A were defined in Lecture 11, we have that

$$
\left(\begin{array}{c} A \text{ has volume } \\ \end{array}\right) \Leftrightarrow \left(\begin{array}{c} I_A \in \text{Int}_b(P, \mathbb{R}) \\ \end{array}\right).
$$

Moreover, if this happens, then the formula defining $vol(A)$ takes the form

$$
\text{vol}(A) = \int_P I_A.
$$

 3^o If $A = \emptyset \subseteq \mathbb{R}^n$, then one cannot really consider "the constant function 1 on A". We will nevertheless make the convention that \emptyset has volume, and that vol $(\emptyset) = 0$. This agrees with the formula given in part 2° of the remark – indeed if P is any half-open rectangle in \mathbb{R}^n , then the indicator function $I_{\emptyset}: P \to \mathbb{R}$ is just the zero-function on P, so we do have

$$
\text{vol}(\emptyset) = \int_P I_{\emptyset} = 0.
$$

Problem 3. Let A, B be two subsets of \mathbb{R}^n , such that both A and B have volume.

- (a) Prove that $A \cap B$ has volume.
- (b) Prove that $A \cup B$ has volume.
- (c) Prove that $vol(A \cup B) = vol(A) + vol(B) vol(A \cap B)$.

Problem 4. (a) Consider the set

$$
E := \{ (s, t) \in \mathbb{R}^2 \mid \frac{s^2}{4} + \frac{t^2}{9} = 1 \} \subseteq \mathbb{R}^2.
$$

(E is what we call an *ellipse*.) Prove that E is a null subset of \mathbb{R}^2 .

(b) Consider the set

$$
C = \{(x, y, z) \in \mathbb{R}^3 \mid x, y, z \ge 0, x + y + z = 1\} \subseteq \mathbb{R}^3.
$$

Prove that C is a null subset of \mathbb{R}^3 .