
Math 247, Fall Term 2011

Homework assignment 7

Posted on Wednesday, November 9; due on Wednesday, November 16

Problem 1 fills in the proof of the fact stated in class (Lecture 14, Remark 14.6), that
“one can change the values of a function f on a null set without affecting the integrability
properties of f”.

Problem 1. (a) Let N be a null subset of Rn, and let h : N → R be a bounded
function. Prove that h is integrable on N , and that

∫
N h = 0.

(b) Let P be a half-open rectangle in Rn, let f, g : P → R be two bounded functions,
and suppose that the following conditions (i) and (ii) are fulfilled.
(i) There exists a null set N ⊆ P such that f( ~x ) = g( ~x ) for every ~x ∈ P \N .
(ii) The function f is integrable on P .
Prove that g is integrable on P , and that

∫
P g =

∫
P f .

Problem 2 gives a generalization to n dimensions for the calculation done in class (Lec-
ture 14, Remark 14.5) concerning the volume of the closed unit ball in R3. For every n ∈ N,
we accept the fact that the closed unit ball of Rn has volume, and we denote this volume
by Ωn. (For example, for n = 1 we have Ω1 = 2, because the closed unit ball in R is just
the interval [−1, 1]. For n = 2 we have Ω2 = π, the area of a disc of radius 1 in the plane.
The calculation from Remark 14.5 was done for n = 3, and showed that Ω3 = 4π/3.)

Problem 2. (a) In the notations introduced above, prove that

Ωn+1/Ωn =

∫ 1

−1
(1− r2)n/2 dr, ∀n ≥ 1.

(c) By using the part (a) of the problem, determine the value of Ω4.

[Note: when evaluating an integral of the form
∫ 1
−1(1 − r

2)n/2 dr, it may be convenient to
use the trigonometric substitution r = sin θ, where −π/2 ≤ θ ≤ π/2.]

Problem 3. Let b be a positive real number, and let D be the punctured disk of radius
b in R2:

D = {(s, t) ∈ R2 | 0 <
√
s2 + t2 ≤ b}.

By using polar coordinates, calculate the integral
∫
D e

−(s2+t2) d(s, t).

Problem 4. Let f : R2 → R be defined by

f( (x, y) ) :=

{
x2y/(x2 + y2) if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).
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(a) Consider the point ~0 = (0, 0) ∈ R2. Prove that f has partial derivatives at ~0, and
calculate the values of

(
∂1f
)
(~0 ) and

(
∂2f
)
(~0 ).

(b) Consider again the point ~0 ∈ R2, and consider a vector ~v = (α, β) ∈ R2 where
α 6= 0 6= β. Prove that the directional derivative

(
∂~vf
)
(~0 ) exists, and calculate its value.

(c) By using parts (a) and (b) of the problem, prove that one can consider the function
L : R2 → R defined by

L(~v ) =
(
∂~vf
)
(~0 ), ~v ∈ R2.

Is L a linear function? Justify your answer.

Problem 5. Consider the function g : R2 → R defined by

g( (x, y) ) :=

{
1, if x 6= 0 and 0 < y < x2

0, otherwise.

(a) On a picture of R2 mark the subset of the plane where g takes the value 0, and mark
the subset of the plane where it takes the value 1.

(b) Let ~v be a non-zero vector in R2. By using the picture drawn in part (a), prove that
the directional derivative (∂~v g)(~0 ) exists and compute its value.

Problem 6. Let f : R2 → R be a function, and suppose that (∂~vf)(~0 ) exists for
every ~v ∈ R2. Does it follow that f is continuous at ~0? Justify your answer (proof or
counterexample).
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