Math 247, Fall Term 2011
Homework assignment 9

Posted on Wednesday, November 23; due on Wednesday, November 30

The transformation 7 : P — R3 discussed in Problem 1 is called “transformation to
spherical coordinates in R3”. The points in the domain P of this transformation are written
in the form (r, &, 0), where ¢ is called “angle of longitude” and @ is called “angle of latitude”.

Problem 1. Let P = (0,1) x (0,27) x (—7/2,7/2) C R? and consider the function
T : P — R3 defined by

T(Z) := (rcos§ cos,rsiné cosf,rsinf), for &= (r,&0) € P.

(a) Prove that for a point ¥ = (r,&,60) € P, one has ||T(Z) || =1.
(b) Fix an 7, € (0,1) and a 0, € (—m/2,7/2), and consider the path v : (0,27) — R3
defined by
(€)= T((ro,&,0,)), 0<E<2m.

Describe the image of this path.
(c) Fix an r, € (0,1) and a &, € (0,27), and consider the path v : (—7/2,7/2) — R3
defined by
v(0) =T ((ro,&0,0)), —7/2<0<m/2.

Describe the image of this path.
(d) We accept the fact that T is a C*-function. Write down the Jacobian matrix (JT)( %)
at a point ¥ = (r,&,0) € P.

Problem 2. Let f : R — R be a C! function (that is, f is differentiable and f’: R — R
is continuous). Let F' : R? — R be the function defined by by the formula F(s,t) :=
f(st), V(s,t) € R% Verify that F € C*(R? R), and prove that

s(O1F)(s,t) =t (82F)(s,t), V(s,t) € R%

Problem 3. Let I C R be an open interval and let v : I — R” be a C''-path with the
property that

@[l =1, viel

L,
Fix a point t, € I, denote ~(t,) =: d and +/(t,) =: U. Prove that ¥ is orthogonal to @ (that
is, prove that (a@,v) = 0).

In Problems 4 — 6 we examine the issue of points of local minimum/maximum for
f € C'(A,R), but where the local minimization or maximization is constrained to a specified
subset S of A.



Definition. Let A C R™ be open, and let S be a non-empty subset of A. Let f be a
function in C1(A4,R) and let @ be a point in S.

e If there exists r > 0 such that f(Z) < f(a) for every ¥ € SN B(d;r), then we say
that a is is a local mazimum for f | S.

e If there exists r > 0 such that f(Z) > f(a) for every ¥ € SN B(d;r), then we say
that @ is is a local minimum for f | S.

e If @ is either a local maximum or a local minimum for f | S, then we say that @ is a
local extremum point for f | S.

In connection to the above definition, we can define a concept of “tangent vector to S”,
as follows.

Definition. Let S be a non-empty subset of R™ and let @ be a point of S. A vector
7 € R™ is said to be tangent to S at @ if there exists a C'-path 7 : (—=1,1) — R" such that
v(t) € S for every t € (—1,1), such that v(0) = @, and such that 7/(0) = v.

Problem 4. Let A be an open subset of R” and let S be a non-empty subset of A. Let
f be a function in C'(A,R). Let @ be a point in S, and suppose that @ is a local extremum
point for f | S. Prove that the gradient vector (Vf)( @) is perpendicular to every vector ¢
which is tangent to S at a.

Problem 5. Let A be an open subset of R and let f be a function in C'(A,R). Let
us fix a value o € R which is taken by f, and let us put

S:={FcA|f(Z)=a}

(this set S is called the level set of f, corresponding to the value o). We will assume that
S has the following property:

For every @ € S, the linear span of the vectors tangent
(%) TR, : . L
to S at d is a linear subspace of dimension n — 1 in R"™.

Now suppose that g is another function in C'(A,R), and that @ € S is a point of local
extremum for g | S. By using the result in Problem 4, prove that the gradient vectors
(Vf)(@) and (Vg)(@) are colinear.

The colinearity shown in Problem 5 is a trick used in extremum problems, which is
referred to under the name of “Lagrange multipliers”. The next problem is an illustration
of how this works. (We accept that the condition (%) from Problem 5 is satisfied by the
sphere, hence that the trick of the Lagrange multipliers can be indeed applied.)

Problem 6. Let S be the unit sphere in R3, S = {(x,y,2) | 2% + y*> + 2 = 1}. By
using Lagrange multipliers, determine the biggest and the smallest possible values of the
expression 3x — yz when (z,y,2) € S.



