
Math 247, Fall Term 2011

Homework assignment 9

Posted on Wednesday, November 23; due on Wednesday, November 30

The transformation T : P → R3 discussed in Problem 1 is called “transformation to
spherical coordinates in R3”. The points in the domain P of this transformation are written
in the form (r, ξ, θ), where ξ is called “angle of longitude” and θ is called “angle of latitude”.

Problem 1. Let P = (0, 1) × (0, 2π) × (−π/2, π/2) ⊆ R3 and consider the function
T : P → R3 defined by

T ( ~x ) := (r cos ξ cos θ, r sin ξ cos θ, r sin θ), for ~x = (r, ξ, θ) ∈ P .

(a) Prove that for a point ~x = (r, ξ, θ) ∈ P , one has ||T ( ~x ) || = r.
(b) Fix an ro ∈ (0, 1) and a θo ∈ (−π/2, π/2), and consider the path γ : (0, 2π) → R3

defined by
γ(ξ) = T ( (ro, ξ, θo) ), 0 < ξ < 2π.

Describe the image of this path.
(c) Fix an ro ∈ (0, 1) and a ξo ∈ (0, 2π), and consider the path γ : (−π/2, π/2) → R3

defined by
γ(θ) = T ( (ro, ξo, θ) ), −π/2 < θ < π/2.

Describe the image of this path.
(d) We accept the fact that T is a C1-function. Write down the Jacobian matrix (JT )( ~x )

at a point ~x = (r, ξ, θ) ∈ P .

Problem 2. Let f : R→ R be a C1 function (that is, f is differentiable and f ′ : R→ R
is continuous). Let F : R2 → R be the function defined by by the formula F (s, t) :=
f(st), ∀ (s, t) ∈ R2. Verify that F ∈ C1(R2,R), and prove that

s (∂1F )(s, t) = t (∂2F )(s, t), ∀ (s, t) ∈ R2.

Problem 3. Let I ⊆ R be an open interval and let γ : I → Rn be a C1-path with the
property that

|| γ(t) || = 1, ∀ t ∈ I.

Fix a point to ∈ I, denote γ(to) =: ~a and γ′(to) =: ~v. Prove that ~v is orthogonal to ~a (that
is, prove that 〈~a,~v 〉 = 0).

In Problems 4 – 6 we examine the issue of points of local minimum/maximum for
f ∈ C1(A,R), but where the local minimization or maximization is constrained to a specified
subset S of A.
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Definition. Let A ⊆ Rn be open, and let S be a non-empty subset of A. Let f be a
function in C1(A,R) and let ~a be a point in S.
• If there exists r > 0 such that f( ~x ) ≤ f(~a ) for every ~x ∈ S ∩ B(~a ; r ), then we say

that ~a is is a local maximum for f | S.
• If there exists r > 0 such that f( ~x ) ≥ f(~a ) for every ~x ∈ S ∩ B(~a ; r ), then we say

that ~a is is a local minimum for f | S.
• If ~a is either a local maximum or a local minimum for f | S, then we say that ~a is a

local extremum point for f | S.

In connection to the above definition, we can define a concept of “tangent vector to S”,
as follows.

Definition. Let S be a non-empty subset of Rn and let ~a be a point of S. A vector
~v ∈ Rn is said to be tangent to S at ~a if there exists a C1-path γ : (−1, 1)→ Rn such that
γ(t) ∈ S for every t ∈ (−1, 1), such that γ(0) = ~a, and such that γ′(0) = ~v.

Problem 4. Let A be an open subset of Rn and let S be a non-empty subset of A. Let
f be a function in C1(A,R). Let ~a be a point in S, and suppose that ~a is a local extremum
point for f | S. Prove that the gradient vector (∇f)(~a ) is perpendicular to every vector ~v
which is tangent to S at ~a.

Problem 5. Let A be an open subset of Rn and let f be a function in C1(A,R). Let
us fix a value α ∈ R which is taken by f , and let us put

S := {~x ∈ A | f( ~x ) = α}

(this set S is called the level set of f , corresponding to the value α). We will assume that
S has the following property:

(∗)
{

For every ~a ∈ S, the linear span of the vectors tangent
to S at ~a is a linear subspace of dimension n− 1 in Rn.

Now suppose that g is another function in C1(A,R), and that ~a ∈ S is a point of local
extremum for g | S. By using the result in Problem 4, prove that the gradient vectors
(∇f)(~a ) and (∇g)(~a ) are colinear.

The colinearity shown in Problem 5 is a trick used in extremum problems, which is
referred to under the name of “Lagrange multipliers”. The next problem is an illustration
of how this works. (We accept that the condition (∗) from Problem 5 is satisfied by the
sphere, hence that the trick of the Lagrange multipliers can be indeed applied.)

Problem 6. Let S be the unit sphere in R3, S = {(x, y, z) | x2 + y2 + z2 = 1}. By
using Lagrange multipliers, determine the biggest and the smallest possible values of the
expression 3x− yz when (x, y, z) ∈ S.
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