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Chapter 1

Permutations and Subsets

1.1 Permutations

A permutation of a set is an ordered sequence of the elements of the set, each
element appearing once in the list. For example, there are 6 permutations of
{1, 2, 3}, namely

123, 132, 213, 231, 312, 321.

When n = 0, we say that there is a single permutation, which happens to
be an empty list. We begin by answering a basic counting question: how
many permutations are there of {1, . . . , n}? The answer, given below, can be
compactly expressed using factorial notation. For each nonnegative integer
n, define n!, by 0! = 1, and

n! =
n∏
i=1

i, n ≥ 1.

We say “n factorial” for n!.

1.1.1 Lemma. If n ≥ 0, then the number of permutations of a set with size
n is n!.

Proof. We prove the result by induction on n. The result is true when n = 0
and n = 1.

Suppose k ≥ 2 and a1a2 . . . ak is a permutation of {1, . . . , k}. We can
insert k+1 into this sequence in k+1 different places, and in this way we get
k+1 permutations of {1, . . . , k+1} from each permutation of {1, . . . , k}. By
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1.2. SUBSETS

induction there are k! permutations of {1, . . . , k} and so we get (k + 1)k! =
(k + 1)! different permutations of {1, . . . , k + 1}.

If we delete k+1 from a permutation of {1, . . . , k}, we obtain a permuta-
tion of {1, . . . , k}. Hence every permutation of {1, . . . , k+1} can be obtained
by inserting k+ 1 as described. Therefore there are (k+ 1)! permutations of
{1, . . . , k + 1}.

1.2 Subsets

A k-subset of {1, . . . , n} is a subset of {1, . . . , n} with size k. We determine
the number of k-subsets of {1, . . . , n}.

We recall that the binomial coefficient
(
n
k

)
is defined by(

n

k

)
:=

n!

k!(n− k)!
.

From this we see that (
n

0

)
= 1,

(
n

1

)
= 1

and (
n

k

)
=

(
n

n− k

)
.

Let subs(n, k) denote the number of k-subsets of {1, . . . , n}. Then

subs(n, 0) = 1, subs(n, 1) = n

and, since the complement of a k-subset is an (n− k)-subset,

subs(n, k) = subs(n, n− k).

These observations may make the following result less surprising.

1.2.1 Lemma. The number of k-subsets of an n-set is
(
n
k

)
.

Proof. Consider the set P of all permutations of {1, . . . , n}. The first k
elements of each such permutation determine a k-subset of {1, . . . , n}. Hence
we can partition P into classes, one for each k-subset of {1, . . . , n}. The
number of classes is subs(n, k).
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CHAPTER 1. PERMUTATIONS AND SUBSETS

If S is a k-subset of {1, . . . , n}, then the number of permutations in the
class belonging to S is k!(n − k)!—this is the product of the number of
permutations of S with the number of permutations of the complement of S.
So the size each of our subs(n, k) classes is k!(n− k)! and therefore

subs(n, k) k!(n− k)! = n!.

It follows that subs(n, k) =
(
n
k

)
.

1.3 Separated Subsets

A subset of {1, . . . , n} is separated if no two of its elements are consecutive.
For example if n = 7 and k = 3, the separated subsets of {1, . . . , 7} are

{135, 136, 137, 146, 147, 157, 246, 247, 257, 357}.

1.3.1 Lemma. The number of separated k-subsets of {1, . . . , n} is
(
n−k+1

k

)
.

Proof. We prove the result by defining a map from the set of k-subsets of
{1, . . . , n − k + 1} to the set of separated k-subsets of {1, . . . , n}, and then
verifying that this map is invertible.

If
S = {a1, . . . , ak}

is a k-subset of {1, . . . , n− k + 1}, define α(S) by

α(S) = {a1, a2 + 1, . . . , ak + k − 1}.

In other terms, add i− 1 to the i-th element of S, for i = 1, . . . , k. Note that
α(S) has size k, and its largest element is at most

(n− k + 1) + (k − 1) = n,

so it is a k subset of {1, . . . , n}. If α(S) = {b1, . . . , bk}, then

bi+1 − bi = (ai+1 + i)− (ai + i− 1) = ai+1 − ai + 1 ≥ 2.

Therefore α(S) is separated.
To show that α is invertible, we construct an inverse β for it. Suppose T

is a separated k-subset of {1, . . . , n} and

T = {b1, . . . , bk}.
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1.4. BIJECTIONS

Define β(T ) to be the set

{b1, b2 − 1, . . . , bk − k + 1}.

(Thus we get β(T ) by subtracting i − 1 from the i-th element of T , for
i = 1, . . . , k.)

There is one fine point to be considered: we must verify that β(T ) is a k-
subset of {1, . . . , n−k+1}. This means we must verify that β(T ) consists of
k distinct integers from the interval 1 to n− k+ 1. Suppose T = {b1, . . . , bk}
and ci := bi − i+ 1 . Then

bi+1 ≥ bi + 2

and so

ci+1 = bi+1 − i ≥ bi − i+ 2 = bi − (i− 1) + 1 = ci + 1;

it follows that elements c1, . . . , ck of β(T ) are distinct. Since c1 = b1 ≥ 1
and ck = bk − k + 1 ≤ n − k + 1, we see that β(T ) ⊆ {1, . . . , n − k + 1}.
We conclude that β maps separated k-subsets of {1, . . . , n} to k-subsets of
{1, . . . , n− k + 1}.

Clearly, for any k-subset S of {1, . . . , n− k + 1},

β(α(S)) = S

and for any separated k-subset T of {1, . . . , n},

α(β(T )) = T.

So β is an inverse for α.
Having shown that α is invertible, we conclude that it is bijective. There-

fore the set of separated k-subsets of {1, . . . , n} has the same size as the set
of k-subsets of {1, . . . , n− k + 1}.

1.4 Bijections

As we saw in the previous section, one way to determine the size of set A is
to show that it has the same size of some set B, where |B| is known.

To show that A and B have the same size, we pair off the elements of A
with those of B. This means we must define a map ψ so that the element a

10



CHAPTER 1. PERMUTATIONS AND SUBSETS

of A is paired with ψ(a), an element of B. Clearly our ‘pairing’ ψ is useless
if it pairs different elements of A with the same element of B, or if there is
some element of B which does not have the form ψ(a) for some a in A. In
other words we need ψ to be injective (one-to-one) and surjective (onto). A
mapping that is injective and surjective is bijective.

If A and B are sets and ψ is a bijection from A to B, then |A| = |B|.
In general if we have a mapping ψ : A → B and we want to prove

it is a bijection, we have two choices. We can verify that it is injective
and surjective, or we can show that ψ has an inverse, and then use the
theorem from Calculus that tells us that a function is bijective if and only it
is invertible.

In the previous section we used the second method, chiefly because the
obvious way to show that α was surjective would more or less force us to
construct the inverse map anyway. (It is comparatively easy to see that α is
injective.)

1.5 Sums and Products

It is simple and obvious that if A and B are sets and A ∩B = ∅, then

|A ∪B| = |A|+ |B|.

More generally, if we have pairwise disjoint sets A1, . . . , Ak, then

|A1 ∪ · · ·Ak| = |A1|+ · · ·+ |Ak|.

As an application, let Ω denote the set of all permutations of {1, . . . , k}. If
we define Ωi to be the set of permutations in Ω which have k in the i-th
position, then Ω is the disjoint union of Ω1, . . . ,Ωk, and consequently

|Ω| = |Ω1|+ · · ·+ |Ωk|

It is not too difficult to show that “deleting k” is a bijection from Ωi to the
permutations of {1, . . . , k − 1}, and therefore

|Ω1| = · · · = |Ωk|.

and so |Ω| = k|Ωk|. It follows by induction that |Ω| = k!. Note that this is
really a repackaging of the the proof we offered earlier.
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1.5. SUMS AND PRODUCTS

If A1, . . . , Ak are sets then their Cartesian product

A1 × · · · × Ak

is the set of all k-tuples
(a1, . . . , ak)

where ai ∈ Ai for each i. We write An to denote the Cartesian product of n
copies of A. We have

|A1 × · · · × Ak| =
k∏
i=1

|Ai|

whence |An| = |A|n. As an exercise, find a bijection from the set of permu-
tations of {1, . . . , k} to the product set

A1 × · · · × Ak

where Ai = {1, . . . , i}. Note that this leads to a proof, without using induc-
tion, that the number of permutations of a set of size n is n!.
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Chapter 2

Catalan Paths

2.1 Lattice Paths

We consider lattice paths, which are paths on the integer lattice in two
dimensions, with steps either up (add (1, 0)) or to the right (add (0, 1)). We
count them using a simple bijection onto subsets.

2.1.1 Lemma. The number of lattice paths from (0, 0) to (m,n) is
(
m+n
n

)
.

Proof. Each lattice path from (0, 0) to (m,n) contains exactly m+ n steps,
with n up and m right. We can represent the steps uniquely by a sequence
s1 . . . sm+n, in which si = u for n choices of i, and si = r for the remaining
m choices of i. Let α denote the set of all i for which si = u. Then α is an
n-subset of {1, . . . , n+m}, and this map from paths to subsets is a bijection.
The result follows, since there are

(
m+n
n

)
choices of α.

For example, there are
(
5
2

)
paths from (0, 0) to (3, 2), given by

uurrr, ururr, urrur, urrru, ruurr,

rurur, rurru, rruur, rruru, rrruu.

2.2 A Quadratic Recurrence

From Lemma 2.1.1 we find that there are exactly
(
2n
n

)
paths from (0, 0) to

(n, n). We want to determine how many of these paths never go below the
line y = x; we call such a path a Catalan path. The number of Catalan paths
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2.3. A GENERATING SERIES

of length n is called the n-th Catalan number and is denoted by cn. We find
that c1 = 1, c2 = 2 and c3 = 5; we list the paths when n = 3.

uuurrr, uururr, uurrur, uruurr, ururur.

Any Catalan path of positive length touches the line y = x at least twice.
A Catalan path of length n that meets y = x exactly twice can be represented
by a sequence of u’s and r’s of the form

uαr,

where α is a sequence u’s and r’s representing a Catalan path of length n−1.
We will use this shortly.

2.2.1 Theorem. If cn is the number of Catalan paths of length n, then
c0 = 1 and if n ≥ 1,

cn =
n∑
i=1

ci−1cn−i.

Proof. There is exactly one Catalan path of length 0, whence c0 = 1. Assume
n > 0. Let γ denote a Catalan path of length n and let i be the least positive
integer such that γ passes through (i, i). Then γ splits into two parts, the
first of which is a Catalan path γ1 of length i that meets y = x only at its
end points and the second, γ2 is a Catalan path from (i, i) to (n, n).

The number of choices for γ1 is ci−1 (by our remark above) and the number
of choices for γ2 is cn−i. So there are exactly ci−1cn−i Catalan paths of length
n that meet y = x for the second time at (i, i). Hence

cn =
n∑
i=1

ci−1cn−i.

Using this recurrence we can compute that the first Catalan numbers are

1, 1, 2, 5, 14 . . .

2.3 A Generating Series

We derive more information about the Catalan numbers by working with the
series

C(x) :=
∑
n≥0

cnx
n.

14



CHAPTER 2. CATALAN PATHS

This is the generating series or generating function for the Catalan numbers.
(But it need not be a function of x, and it is not clear what it ‘generates’.)

One key fact we need is the following. If we are given series

A(x) =
∑
n≥0

anx
n, B(x) =

∑
n≥0

bnx
n

then the coefficient of xn in A(x)B(x) is

n∑
k=0

akbn−k.

Note that this is not a theorem, it is actually the definition of the series
A(x)B(x). That is,

A(x)B(x) :=
∑
n≥0

(
n∑
k=0

akbn−k

)
xn.

2.3.1 Theorem. If C(x) is the generating series for the Catalan numbers,
then

C(x) = 1 + xC(x)2.

Proof. We prove C(x) and 1+xC(x)2 are equal by showing that the coefficient
of xn is the same in both cases.

The constant term of C(x) is 1, the coefficient of x0 is the same.
Assume that n > 0. The coefficient of xn in C(x) is cn, by definition.

The coefficient of xn in 1 + xC(x)2 is the coefficient of xn in xC(x)2, and is
thus equal to the coefficient of xn−1 in C(x)2.

Now the coefficient of xn−1 in C(x)2 is equal to

n−1∑
k=0

ckcn−1−k =
n∑
i=1

ci−1cn−i.

By Theorem 2.2.1, the last sum is cn.

It follows that

1− C(x) + xC(x)2 = 0;

thus we have C(x) expressed as the solution to a quadratic equation.
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2.4. A FORMULA

2.4 A Formula

We derive an explicit expression for the n-th Catalan number. In the previous
section we saw that the generating series for that Catalan numbers satisfies
the equation

1− C(x) + xC(x)2 = 0.

This is a quadratic equation over the field of rational functions in x, and we
can solve it using the usual formula:

C(x) =
1

2x
(1±

√
1− 4x). (2.4.1)

At first sight this may not seem like progress. But from Calculus we recall
the binomial theorem:

(1 + x)a = 1 +
∑
k≥1

a(a− 1) · · · (a− k + 1)

k!
xk.

We define the binomial coefficient
(
a
k

)
by(

a

0

)
= 1

and when k > 0, (
a

k

)
:=

a(a− 1) · · · (a− k + 1)

k!

Then

(1− 4x)1/2 = 1 +
∑
k≥1

(
1
2

k

)
(−4)kxk

and now some algebra yields that

(−4)k
(

1
2

k

)
= −2

k

(
2k − 2

k − 1

)
.

Hence (2.4.1) becomes

C(x) =
1

2x
±

(
1

2x
− 1

x

∑
k≥1

1

k

(
2k − 2

k − 1

)
xk

)
,
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CHAPTER 2. CATALAN PATHS

where we must take the minus sign to obtain non-negative coefficients. It
follows that

C(x) =
∑
k≥1

1

k

(
2k − 2

k − 1

)
xk−1 =

∑
n≥0

1

n+ 1

(
2n

n

)
xn.

2.4.1 Theorem. The number of Catalan paths of length n is 1
n+1

(
2n
n

)
.

2.5 The Binomial Theorem

We define the binomial series (1 + x)a by

(1 + x)a :=
∑
k≥0

(
a

k

)
xk.

Here x and a are independent variables, thus we are viewing the binomial
coefficient

(
a
k

)
as a polynomial in a of degree k. If m and n are integers, the

coefficient of xk in (1 + x)m+n is (
m+ n

k

)
while the coefficient of xk in the product (1 + x)m(1 + x)n is∑

i≥0

(
m

i

)(
n

k − i

)
.

We can prove combinatorially, or by induction, that these two expressions
are equal, and consequently the difference(

a+ b

k

)
−
∑
i≥0

(
a

i

)(
b

k − i

)
is a polynomial in the two variables (a and b) which is zero whenever a and
b are non-negative integers. Therefore it must be the zero polynomial and so(

a+ b

k

)
=
∑
i≥0

(
a

i

)(
b

k − i

)
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2.5. THE BINOMIAL THEOREM

for all k. From this we can now conclude that

(1 + x)a(1 + x)b := (1 + x)a+b

for any variables a and b.
In analysis, we would define (1 + x)a by

(1 + x)a = exp(a log(1 + x)).

Hence any question about (1 + x)a reduces to a question about exp and log.
So in this setting, proving that (1 + x)a(1 + x)b = (1 + x)a+b reduces to
showing that

exp(a+ b) = exp(a) exp(b)

for any commuting variables a and b. Note that that exp(x) is defined by

exp(x) =
∑
n≥0

xn

n!

We will discuss exp and log in more detail in Chapter 3.
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Chapter 3

Generating Series

This chapter introduces power series and Laurent series. It serves to justify
our computations using generating series.

3.1 Laurent Series and Power Series

A polynomial in the variable x is a linear combination of powers of x:

a0 + a1x+ · · ·+ anx
n.

(Note that by definition, a linear combination has only finitely many non-
zero coefficients.) In this course we view polynomials as finite sequences of
coefficients. We can add and multiply polynomials in the manner we have
become accustomed to. However we will rarely need to evaluate them and,
if we do, it will probably be at 0.

A Laurent series is a series ∑
n∈Z

anx
n

where all but finitely many of the coefficients with negative indices are zero.
A power series is a Laurent series of the form∑

n≥0

anx
n.

In general the coefficients may an may lie in any ring, but here we will assume
that they lie in a field.
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The order ord(A(x)) of a Laurent series A(x) is the greatest integer k
such that x−kA(x) is a power series. So a power series is a Laurent series
with non-negative order, and its order is positive if and only if it is divisible
by x.

We add and multiply Laurent series in the obvious way: if

A(x) =
∑
n

anx
n, B(x) =

∑
n

bnx
n

are two Laurent series, then

A(x) +B(x) :=
∑
n

(an + bn)xn

and

A(x)B(x) =
∑
n

(∑
k

akbn−k

)
xn.

We have that

ord(A(x) +B(x)) ≥ min{ord(A(x)), ord(B(x))},
ord(A(x)B(x)) = ord(A(x)) + ord(B(x)),

from which we see that the sum and product of Laurent series is a Laurent
series.

The Laurent series B(x) is the inverse of the Laurent series A(x) if

A(x)B(x) = 1.

If A(x) has an inverse, we denote it by A(x)−1. We will show that if F (x) is
a power series with positive order, then

(1− F (x))−1 =
∑
k≥0

F (x)k.

However there is one problem to be faced first—we have not defined infinite
sums of Laurent series! Suppose I is a set and we are given a set of Laurent
series

Ai(x), i ∈ I.
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We say this set of series is summable if for each integer n, there are only
finitely many series Ai such that the coefficient of xn in Ai(x) is not zero. If
this set of series is summable, then its sum∑

i∈I

Ai(x)

is the Laurent series where the coefficient of xn is the sum of the coefficients
of xn from each of the series Ai(x). This is a finite sum, and so all difficulties
evaporate. By way of example, if F (x) has positive order r, then F (x)k has
order kr, and so the coefficient of xn in F (x)k is zero when kr > n. Therefore
the set of series

F (x)k, k ≥ 0

is summable and so
∑

k≥0 F (x)k is defined.

3.1.1 Theorem. If F (x) is a power series with positive order, then∑
k≥0

F (x)k

is the inverse of 1− F (x).

Proof. We have

1− F (x)n+1 = (1− F (x))
n∑
k=0

F (x)n.

If ` ≤ n, then the coefficient of x` in the left hand side is equal to the
coefficient of x` in the constant series 1. Also the coefficient of x` in the right
hand side is equal to the coefficient of x` in

(1− F (x))
∑
k≥0

F (x)n.

This shows that the coefficient of x` in the above series is equal to the coef-
ficient in the constant series 1, and therefore these two series are equal.

3.1.2 Corollary. The set of Laurent series over a field is a field.
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3.2. EXP, LOG AND DIFF

Proof. We must verify that every non-zero Laurent series has an inverse.
Let A(x) be a Laurent series with order k and let c be the constant term of
x−kA(x). Then c 6= 0 and

c−1x−kA(x) = 1− F (x),

where F (x) is a power series of positive order. Hence c−1x−kA(x) is invertible
and therefore A(x) is invertible.

3.1.3 Corollary. A power series is invertible if and only if its constant term
is not zero.

3.1.4 Corollary. The set of rational functions over C is isomorphic to a
subfield of the Laurent series over C.

Proof. Suppose f(x)/g(x) is a rational function, where for convenience we
assume that f and g have no common factor. Then we may express g(x) in
the form

cxk
m∏
i=1

(1− λix)

where c is a non-zero complex number and k ≥ 0 (and the complex numbers
λi are the reciprocals of the non-zero zeros :-) of g(x)). Hence

f(x)

g(x)
= c−1x−kf(x)

m∏
i=1

(1− λix)−1

which shows that f(x)/g(x) is a product of Laurent series.

Note: what we have called Laurent series and power series are sometimes
called formal Laurent series and formal power series. In this usage the ad-
jective ‘formal’ has no mathematical meaning, although it may be intended
as a promise that no attempt will be made to evaluate the series at some
non-zero value of the variable. (These intentions often become road-paving.)

3.2 Exp, Log and Diff

We define the exponential series exp(x) by

exp(x) :=
∑
n≥0

xn

n!
.
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It is not hard to verify that

exp(x+ y)t = exp(xt) exp(yt).

We also define the logarithmic series by

log(1 + x) :=
∑
n≥1

(−1)n−1
xn

n
.

Note that if F (x) is a power series, then exp(F (x)) and log(1 + F (x)) are
defined if and only if F (0) = 0. (We cannot define these series if F (x) is a
Laurent series of negative order.)

To show that these series function as we would expect, we need to intro-
duce the derivative of a series. If C(x) is a Laurent series given by

C(x) =
∑
n

cnx
n,

we define its derivative to be the series

d

dx
C(x) :=

∑
n≥0

(n+ 1)cn+1x
n.

We will often denote the derivative of C(x) by C ′(x). As usual differentiation
is a linear mapping, on the vector space of Laurent series. We also have the
product rule:

d

dx
(A(x)B(x)) = A′(x)B(x) + A(x)B′(x).

If F (x) =
∑

n fnx
n is a Laurent series and G(x) is a power series with

G(0) = 0, we define their composition (F ◦G)(x) by

(F ◦G)(x) :=
∑
n

fnG(x)n.

We say that G is a compositional inverse for F if (F ◦G)(x) = x. The chain
rule holds:

d

dx
(F ◦G)(x) = G′(x) (F ′ ◦G)(x).

You may confirm that

d

dx
exp(x) = exp(x)
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and that
d

dx
log(1 + x) =

1

1 + x
.

We now prove that

exp(log(1 + x)) = 1 + x.

Let F (x) denote exp(log(1+x)). Then F ′(x) = 1
1+x

F (x) and so (1+x)F ′(x) =
F (x). If the coefficient of xn in F (x) is fn, then

fn = 〈xn, F (x)〉 = 〈xn, (1 + x)F ′(x)〉
= 〈xn, F ′(x)〉+ 〈xn−1, F ′(x)〉
= (n+ 1)fn+1 + nfn.

Therefore
(n+ 1)fn+1 = (1− n)fn, n ≥ 0.

Since f0 = 1 we deduce that f1 = 1 and f2 = 0; hence fn = 0 if n ≥ 2. This
shows that F (x) = 1 + x, as claimed.

We define the series (1 + x)a by

(1 + x)a := exp(a log(1 + x)).

It follows that
(1 + x)a+b = (1 + x)a(1 + x)b.

You should prove that

(1 + x)a =
∑
n≥0

(
a

n

)
xn.

(Earlier we used this as the definition of the LHS; the new definition is
better.)

3.3 Convergence

If G(x) is a Laurent series, we define

‖G(x)‖ := 2− ord(G(x)),
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and call it the norm of G(x). We say that a Laurent series F (x) is the limit
of the sequence of series

F0(x), F1(x), F2(x), . . .

if ‖Fi(x)−F (x)‖ → 0 as i→∞. We say that the above sequence is a Cauchy
sequence if, for each positive real number ε, there is an integer K such that

‖(Fi(x)− Fj(x)‖ ≤ ε

whenever i, j ≥ K.
Prove that a Cauchy sequence always converges to a limit. If we have

series
A1(x), A2(x), . . .

prove that the sequence
n∑
i=1

Ai(x)

is convergent if and only if such Ai(x)→ 0 as i→∞, that is, if and only if
its terms converge to zero. (The limit of this last sequence is the sum of the
Ai.)

3.4 Products

Later we will want work with infinite products of series:∏
r≥0

Ar(x).

If this is to have a meaning then all but finitely many of the series must have
constant term equal to 1.

The most direct direct way to prove that this product is well-defined is
to write ∏

r≥0

Ar(x) = exp[
∑
r≥0

log(Ar(x))]

and then observe that everything is OK provided that the following sum
exists ∑

r≥0

log(Ar(x)).
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This holds if and only ‖log(Ar(x))‖ → 0 as r →∞. If we set

Br(x) = Ar(x)− 1

then ord(log(Ar(x))) = ord(Br(x)) and we conclude that our infinite product
exists if ‖Ar(x)− 1‖ → 0 as r →∞.

3.5 Generating Series over a Vector Space

The Fibonacci numbers fn are defined by the initial conditions f0 = f1 = 1
and the linear recurrence

fn+1 = fn + fn−1, n ≥ 1.

Let Fn be the element of R2 defined by

Fn =

(
fn+1

fn

)
and define the series F (t) by

F (t) :=
∑
n≥0

tnFn.

We can view F (t) as a vector with power series for coordinates, or as a power
series over R2.

We note that

Fn+1 =

(
fn+2

fn+1

)
=

(
fn+1 + fn
fn+1

)
=

(
1 1
1 0

)(
fn+1

fn

)
=

(
1 1
1 0

)
Fn,

whence

Fn =

(
1 1
1 0

)n
F0

and

F (t) =

(∑
n≥0

tn
(

1 1
1 0

)n)(
1
1

)
.

If we set

A =

(
1 1
1 0

)
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then ∑
n≥0

tn
(

1 1
1 0

)n
= (I − tA)−1

=

(
1− t −t
−t 1

)−1
=

1

1− t− t2

(
1 t
t 1− t

)
.

Since

det

(
1 t
t 1− t

)
= 1− t− t2

we have

F (t) =
1

1− t− t2

(
1 t
t 1− t

)(
1
1

)
=

1

1− t− t2

(
1 + t

1

)
and we conclude that ∑

n≥0

fnt
n =

1

1− t− t2
.
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Chapter 4

Languages

4.1 Strings and Languages

Let Σ denote some set of symbols (usually finite). A word over the alphabet
Σ is a finite sequence

a1a2 · · · ak,
where ai ∈ Σ. We admit the empty word of length zero, which we denote by
ε. If we are given words over Σ

α = a1 · · · ak, β = b1 · · · b`

then αβ denotes their concatenation, which is the word

a1 · · · akb1 · · · b`.

We note that
εα = αε = α

and that concatenation is associative

(αβ)γ = α(βγ)

but not commutative in general. A formal language over Σ is a subset of the
set of all words over Σ. We denote the set of all words over Σ by Σ∗.

Since languages are subsets of Σ∗, the complement L of a language L is a
language and, if L and M are languages, so are their union and intersection.
We define the product LM by

LM = {αβ : α ∈ L, β ∈M}.

29
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Hence we can define Ln recursively by

L0 = {ε}, Ln+1 = LLn.

We commonly represent the union of L and M by L+M , and then we define
the Kleene closure L∗ of L by

L∗ := L0 + L1 + L2 + · · · =
∑
k≥0

Lk.

This is consistent with the definition of Σ∗ offered above—Σ∗ is the Kleene
closure of the alphabet Σ.

4.2 Languages and Generating Series

A weight function on an alphabet Σ is a function wt from Σ to the non-
negative integers. We may think of a weight function as a rule assigning a
‘size’ to each letter, the weight wt(α) of a word α = a1 · · · ak is given by

wt(α) =
∑
i

wt(ai).

The simplest example is the weight function that assigns weight 1 to each
symbol; then wt(α) is just the length of α. The generating series of L relative
to the weight function wt is the series∑

n≥0

anx
n,

where an is the number of words in L of weight n.
We consider an example. Let L be the language over Σ = {a, b} that

consists of all words α that contain n copies of a and n of b, and have the
property that if

α = βγ

then the number of a’s in β is at least as large as the number of b’s. Thus
there is a bijection between the words in L with length 2n and the Catalan
paths from (0, 0) to (n, n). If we define

wt(a) = 1, wt(b) = 0
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then the weight of the word is the length of the associated Catalan path, and
the generating series for the language is C(x), the generating series for the
Catalan paths.

To get further we prove that the following identity holds:

L = {ε}+ aLbL. (4.2.1)

First, ε is the unique word in L with weight 0, and so we need prove only
that every word in L with positive weight is in aLbL. Suppose wt(α) > 0.
Then we can factorize α as

α = βγ

where β, γ ∈ L and wt(β) > 0, among all such factorizations there is a unique
one such that wt(β) is minimal. It follows that the last element of β must
be b, and so

β = aβ1b

where β1 ∈ L. This shows that each word in L of positive length lies in
aLbL. It is clear that aLbL ⊆ L and so we conclude that L = {ε} + aLbL,
as claimed.

Note that the above argument also establishes that each word α of positive
length in L can be factorized uniquely in the form

aβbγ,

where β, γ ∈ L.
Now we define a map Ψ from languages over {a, b} to generating series.

To begin we set
Ψ(a) = x, Ψ(b) = 1

and if α = a1 · · · ak ∈ {a, b}∗, then

Ψ(α) =
k∏
i=1

Ψ(ai).

Hence
Ψ(α) = xwt(α).

Finally, if L ⊆ {a, b}∗, then

Ψ(L) :=
∑
α∈L

Ψ(α).

Thus Ψ(L) is the generating series for L relative to the given weight function.
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4.2.1 Lemma. If M1 and M2 are languages over Σ and M1 ∩M2 = ∅, then

Ψ(M1 +M2) = Ψ(M1) + Ψ(M2).

4.2.2 Lemma. Suppose L, M1 and M2 are languages over Σ and L = M1M2.
If each word α in L can be expressed in exactly one way as a concatenation
β1β2, where βi ∈Mi, then Ψ(L) = Ψ(M1)Ψ(M2).

4.2.3 Corollary. Suppose L and M are languages over Σ and that L = Mk.
If each word in L can be expressed in exactly one way as the concatenation
of k words from M , then Ψ(L) = Ψ(M)k.

Note that if ε ∈ M then Mk will not have the ‘unique factorization’
property we need to be able to apply this corollary.

We now apply these results to the language corresponding to the Catalan
paths. From (4.2.1), we find that

Ψ(L) = Ψ(ε) + Ψ(a)Ψ(L)Ψ(b)Ψ(L) = 1 + xΨ(L)2.

Thus we have obtained the equation satisfied by the generating function for
Catalan paths without first determining a recurrence.

4.3 Compositions

We want to find the number of ways in which we can write an integer n as a
sum of k positive integers. For example, if n = 4 and k = 2, we have three
ways:

1 + 3, 2 + 2, 3 + 1.

We use an alphabet Σ that contains a symbol ai for each positive integer i
and define

wt(ai) = i.

If α ∈ Σk, then wt(α) is the sum of k positive integers, and we see that the
number of words in Σk of weight n is equal to the number of ways of writing
n as a sum of k positive integers. Since

Ψ(Σ) = x+ x2 + x3 + · · · = x

1− x
,
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we have

Ψ(Σk) = Ψ(Σ)k =
( x

1− x

)k
.

In a similar fashion we can show that the generating series for the number
of ways we can write n as a sum of k odd integers is(

x

1− x2

)k
.

What is the generating series for the number of ways we can write n as a
sum of integers, each of which is 1 or 2? Take Σ = {a1, a2} and wt(ai) = i.
Then the generating series for Σk gives the number of ways we can write n
as a sum of k 1’s and 2’s. We have Ψ(Σ) = x+x2 and so the number of ways
we can write n as the sum of k 1’s and 2’s is the coefficient of xn in

(x+ x2)k.

Consequently the number of ways we can write n as a sum of integers, each
of which is 1 or 2 is equal to the coefficient of n in∑

k≥0

(x+ x2)k =
1

1− x− x2
.

We can derive this more directly if we note that Ψ(Σ∗) is the generating
series the number of ways we can write n as a sum of integers, each of which
is 1 or 2, and then use the following result.

4.3.1 Theorem. Let wt be a weight function on Σ and let L be a language
over Σ such that:

(a) If i 6= j, then Li ∩ Lj = ∅,

(b) If α ∈ Lk, then there are unique elements β1, . . . , βk in L such that
α = β1 . . . βk.

Then

Ψ(L∗) =
1

1−Ψ(L)
.
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Proof. We have
L∗ = ε+ L+ L2 + · · · .

The sets in this sum are pairwise disjoint and each element in Lk can be
expressed uniquely as a product β1 · · · βk, where βi ∈ L. So

Ψ(L∗) =
∑
k≥0

Ψ(L)k =
1

1−Ψ(L)
.

Note that Σ itself satisfies the conditions of this theorem. Also, the
condition in (a) will fail if ε ∈ L.

By way of example, we compute the generating series for compositions of
n that do not use the integer 3. For this, take Σ to be

{1, 2, 4, 5, . . .}

and define wt(i) = i for each element i of Σ. Then our set of compositions
has generating series Ψ(Σ∗). Since

Ψ(Σ) =
x

1− x
− x3,

we find that

Ψ(Σ∗) =
1

1− x
1−x + x3

=
1− x

1− 2x+ x3 − x4
.

4.4 Factoring Σ∗

If L is a language, we use L+ to denote the set of non-empty words in L.
This if ε /∈ L then L+ = LL∗, and so

Ψ(L+) =
Ψ(L)

1−Ψ(L)
.

We start with the identity, which we call the b-decomposition of (a+ b)∗.

(a+ b)∗ = a∗{ba∗}∗.

To prove this we first make the trivial observation that the right side is
contained in the left. So suppose α ∈ (a + b)∗. If α = ak for some k then
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α ∈ a∗, and therefore α ∈ a∗{ba∗}∗. Otherwise assume that b occurs exactly
m times in α. Then we can write

α = ak
m∏
i=1

ba`i

where k and the integers `i are non-negative. Since ba` ∈ ba∗, the identity
follows.

We also have the so-called block decomposition of (a+ b)∗:

(a+ b)∗ = a∗{b+a+}∗b∗,

which may be proved in a similar fashion. In both this identity and the
previous one, the implied factorization is unique.

If we translate the previous identity to generating series, we get

1

1− 2x
=

1

1− x
1

1− x
1−x

x
1−x

1

1− x
,

which you are invited to verify. Similarly the b-decomposition yields

1

1− 2x
=

1

1− x
1

1− x 1
1−x

.

We use the b-decomposition to count words over {0, 1} that do not contain
11. We have

(0 + 1)∗ = 1∗(01∗)∗.

If L denotes the set of words that do not contain 11, then L has the factor-
ization

L = (ε+ 1)[0(ε+ 1)]∗

and so the generating series for the words in L (weighted by length) is

(1 + x)

[
1

1− x(1 + x)

]
.

Using the block decomposition we can determine the generating series
for the words in (0 + 1)∗ that do not contain 11 as a block (that is they do
not have 11 as a maximal substring). If we denote this set by L, the block
decomposition yields the factorization

L = {1∗ \11}
{

0+{1∗ \11}
}∗

0∗.
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Hence the generating series for L is(
1

1− x
− x2

)
1

1− x
1−x

(
1

1−x − x2
) 1

1− x
.

(We should express these as rational functions, that is, write top and bottom
as polynomials. But you need the practice and I do not.)

4.5 Extracting Coefficients

In the previous section we saw that the generating series for compositions
that do not use 3 is

1− x
1− 2x+ x3 − x4

.

To get any value from this, we need to determine the coefficients in this
series.

Denote this generating series by C(x) =
∑

n≥0 cnx
n. Then

(1− 2x+ x3 − x4)
∑
n≥0

cnx
n = 1− x.

Let 〈xk, A(x)〉 denote the coefficient of xk in the Laurent series A(x). If
m ≥ 4, then

〈xm, 1− x〉 = 〈xm, (1− 2x+ x3 − x4)C(x)〉
= 〈xm, C(x)〉 − 〈xm, 2xC(x)〉+ 〈xm, x3C(x)〉 − 〈xm, x4C(x)〉
= cm − 2cm−1 + cm−3 − cm−4.

Since the coefficient of xm in 1 − x is zero when m ≥ 2, we have the
following recurrence:

cm = 2cm−1 − cm−3 + cm−4, m ≥ 4.

We call this a linear recurrence for cm with degree 4. (In general a lin-
ear recurrence for an with degree k expresses an as a linear combination of
an−k, . . . , an−1.) To use this recurrence we need the first four coefficients c0,
c1, c2 and c3. Note that we also have

〈x3, 1− x〉 = 〈x3, C(x)〉 − 〈x3, 2xC(x)〉+ 〈x3, x3C(x)〉 − 〈x3, x4C(x)〉
= c3 − 2c2 + c0,
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〈x2, 1− x〉 = 〈x2, C(x)〉 − 〈x2, 2xC(x)〉+ 〈x2, x3C(x)〉 − 〈x2, x4C(x)〉
= c2 − 2c1,

and

〈x, 1− x〉 = 〈x,C(x)〉 − 〈x, 2xC(x)〉+ 〈x, x3C(x)〉 − 〈x, x4C(x)〉
= c1 − 2c0.

These yield the equations:

c3 = 2c2 − c0,
c2 = 2c1

c1 = 2c0 − 1.

Since c0 = 1, these imply that c1 = 1, c2 = 2 and c3 = 3. These values are
consistent with the following calculations:

1 = 1, 2 = 1 + 1 = 2, 3 = 1 + 1 + 1 = 1 + 2 = 2 + 1.

(In general it will be easier to determine the initial values without appeal-
ing to the recurrence.) Given the initial values we can compute as many
coefficients as we want using the recurrence.

Note: We are using 〈xn, A(x)〉 to denote the coefficient of xn in A(x), in
Math 239 they denote this by

[xm]A(x).

4.6 Probability

Suppose we have some ‘random variable’ taking non-negative integer values,
where pi denotes the probability that it takes the value i. So pi ≥ 0 and∑

i pi = 1. The probability generating function P (x) is the series∑
n≥0

pnx
n.

For example, if our random variable is the result of a toss of a fair coin, then

P (x) =
1

2
+

1

2
x

37



4.7. WAITING FOR WORDS

(where p0 is the probability that the result is heads). If the result of our
random variable is the number of times heads occurs when we toss the coin
n, then

P (x) =

(
1

2
+

1

2
x

)n
=

n∑
k=0

2−n
(
n

k

)
xk.

4.6.1 Theorem. If we have independent events with probability generating
functions P (x) and Q(x), then the probability generating function for their
sum is P (x)Q(x).

4.6.2 Lemma. If P (x) is the probability generating function of a random
variable, then P ′(1) is the average value of the random variable.

Proof. We have
P ′(x) =

∑
n≥0

npnx
n

and so
P ′(1) =

∑
n≥0

npn

which is the expectation of the random variable. Note that the series for P ′(1)
might not converge, in which case we say that the expectation is infinite.

Thus if P (x) = 1
2
(1+x), then P ′(1) = 1

2
, as expected. If P (x) = (1

2
+ 1

2
x)n,

then

P ′(x) =
1

2
n

(
1

2
+

1

2
x

)n−1
and so P ′(1) = 1

2
n.

4.7 Waiting for Words

Let Σ denote the alphabet {a, b} and let L denote the set of words over Σ
that do not contain the substring aba. We want to compute the number of
words in L with length n, for each n.

To do this we introduce an auxiliary language. Let M denote the set
of words over Σ which have the form aba and contain exactly one copy of
aba—so the final copy is the only one. Then we have the following equations:

ε+ La+ Lb = L+M,

Laba = M +Mba.
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Let L(x) and M(x) denote the generating functions Ψ(L) and Ψ(M). Then

1 + 2xL(x) = L(x) +M(x),

x3L(x) = M(x) + x2M(x).

Solving these yields

L(x) =
1

1− 2x+ x3

1+x2

=
1 + x2

1− 2x+ x2 − x3

and

M(x) =
x3

1− 2x+ x2 − x3
.

Now suppose we play the following ‘game’. We repeatedly toss a fair coin,
with sides labelled a and b, stopping once we have observed the sequence aba.
What is the average length of the game?

The probability that we stop on the n-th toss is 2−n times the number of
strings in M with length n. If

M(x) =
∑
i

cix
i,

then this probability is cn/2
n. We see that∑
n

cn
2n

= M(1/2) = 1,

as we would hope. The expected length of the game is 1
2
M ′(1/2). Now

M ′(x) =
3x2

1− 2x+ x2 − x3
− x3(−2 + 2x− 3x2)

(1− 2x+ x2 − x3)2

=
3

x
M(x)− (−2 + 2x− 3x2)

x3
M(x)2.

and accordingly
1

2
M ′(1/2) =

1

2
(6 + 14) = 10.

We can derive an explicit formula for the waiting time. We require some
new machinery first though. A prefix of α is an initial subsequence of α.
Thus abaa has five prefixes

ε, a, ab, aba, abaa.
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A suffix of α consists of the last i letters in a, for some i. We define the set
of quotients β:α of α and β to be the set of suffixes σ of β such that β = πσ
where π is a suffix of α. So there is one element of β : α for each prefix of β
that is a suffix of α. Some examples will help.

If

α = abba, β = baba

then

β:α = {ba}, α:β = {bba}.

If

α = abba

then

α:α = {ε, bba}.

We see that α:β and β:α are not equal in general and that ε ∈ α:β if and
only if α = β. Note that α:β is a finite language.

If |α| = d and q(x) is the generating series for the quotient α:α and we
set

f(x) :=
xd

q(x)

then

M(x) =
f(x)

1− 2x+ f(x)
.

From this we deduce that

M ′(x) =
f ′(x)

f(x)
M(x)− f ′(x)− 2

f(x)
M(x)2

and consequently M(1/2) = 2/f(1/2). If the probability generating function
P (x) is given by P (x) := M(x/2), then P ′(1) = M(1/2)2 and so the expected
waiting time for α is

q(1/2)

2d
.

Note that

1 ≤ q(1/2) ≤ 1 + · · ·+ 2d−1 = 2− 2−1

and thus the longest waiting time is close to twice the shortest when d is
large.
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4.8 Choosing Words

We consider the following game. Two players toss a fair coin consecutively,
recording heads as a and tails as b. Before starting they each choose distinct
words α and β of length k in {a, b}∗. The player whose word appears first
wins. Our problems is, given α and β, to determine the probability that the
player who chooses α wins.

4.8.1 Lemma. Let Σ be a finite alphabet and suppose α is a non-empty
word over Σ. Let L denote the set of words in Σ∗ that do not contain γ, and
let M denote the set of words in Σ∗ of the form αγ that contain exactly one
copy of γ. Then Lγ = Mγ:γ.

Thus we can rewrite the equations relating L and M as

ε+ LΣ = L+M

Lα = Mα:α.

4.8.2 Theorem. Let S = {α1, . . . , αk} be a set of words such that no word
is a substring of another. Let L denote the set of words that contain no
words from S. Let Mi denote the set of words that contain exactly one copy
of αi, as a suffix, and no copy of αj if j 6= i. Then

ε+ LΣ = L+M1 + · · ·+Mk

Lαi = M1αi:α1 + · · ·+Mkαi:αk, i = 1, . . . , k

By way of example take Σ = {a, b}

β = aaa, γ = bba.

Let L consist of the strings that do not contain β or γ. Let B be the set of
strings that contain no copy of γ and one copy of β as a suffix. Let C be the
set of strings that contain no copy of β and one copy of γ as a suffix. Then

aaa:aaa = {ε, a, a2}, bba:aaa = ∅
aaa:bba = {aa}, bba:bba = {ε}.

Therefore

Laaa = B{ε+ a+ a2}+ Caa,

Lbba = C,
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which yields that

C(x) = x3L(x)

and so

B(x) =
1

1 + x+ x2
(x3L(x)− x2C(x)) =

x3 − x5

1 + x+ x2
L(x).

Hence

C(1/2) =
1

8
L(1/2), B(1/2) =

3

28
L(1/2)

and

L(1/2) =
56

13
.

Here C(1/2) is the probability that γ occurs before β and B(1/2) is the
probability that β occurs before γ. By way of a check we find that

B(1/2) + C(1/2) = 1,

as it should. The ratio of C(1/2) to B(1/2) is equal to the ratio of 3/24 to
3/28.

Again we can derive a formula. If our strings have length d, we get
equations

xdL(x) = q1,1(x)B(x) + q1,2(x)C(x)

xdL(x) = q2,1(x)B(x) + q2,2(x)C(x)

where the qi,j are the generating series for the appropriate quotients. From
these equations we can deduce that

B(x)

C(x)
=
q2,2(x)− q1,2(x)

q1,1(x)− q2,1(x)
.

If we set x = 1
2

here, we get the odds that the player who chose β will win
(on average).

Problem: If you are the first player, which three-letter string should you
choose?
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4.9 Plane trees

A plane tree is a tree drawn in the plane. The plane trees on at most four
edges are shown in Figure 4.1. A plane tree is planted if its root vertex has
valency one. Let T (x) denote the generating series for plane trees, weighted
by the number of edges. So, if the diagram is to be trusted,

T (x) = 1 + x+ 2x2 + 5x3 + · · · .

A plane tree with at least one edge decomposes uniquely into a leftmost
planted plane tree and a plane tree. Hence we have the recurrence

T (x) = 1 + xT (x)2.

One thing this shows is that the number of plane trees on n edges is equal
to the n-th Catalan number. A second, more important thing, is that we
can apply the sum and product rules for generating functions even when the
objects we are counting are not encoded as strings over an alphabet. (We
could encode them as strings, but the encoding is not entirely trivial, and it
is not needed.)

We state the sum and product rules in a more general form. Let S be
a set and let wt be a function from S to Nk. Let x1, . . . , xk be independent
commuting variables and if

α = (a1, . . . , ak) ∈ Nk,

then define

xα :=
k∏
i=1

xaii .

The generating series Ψ(S) is defined by

Ψ(S) :=
∑
σ∈S

xwt(σ).

This is a multivariate generating series, that is, a generating series in the
variables x1, . . . , xk. If S and T are disjoint sets and wt is defined on T too,
then

Ψ(S ∪ T ) = Ψ(S) + Ψ(T ).
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4.9. PLANE TREES

Figure 4.1: Some Plane Trees

If S and T are sets and wt is defined on the Cartesian product S × T by

wt((σ, τ)) := wt(σ) + wt(τ),

then
Ψ(S × T ) = Ψ(S)Ψ(T ).

Finally, if S∗ denotes the set of finite sequences of elements of S, and the
weight of a sequence is the sum of the weights of its terms, then

Ψ(S∗) =
1

1−Ψ(S)
.
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Chapter 5

Partitions

5.1 Partitions of an Integer

A partition of an integer n with k parts is an expression

n = a1 + · · · ak

where a1, . . . , ak are positive integers and ai ≥ ai+1 (if i < k). If π denotes a
partition, then |π| denotes the sum of its parts. We are generally interested
in the number of partitions of n with any number of parts; this number is
denoted by p(n).

We have the following examples:

1 = 1;

2 = 2 = 1 + 1;

3 = 3 = 2 + 1 = 1 + 1 + 1;

4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1;

5 = 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

whence we see that

p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 6.

Let Σ be the alphabet {a1, a2, . . .}, where wt(ai) = i. If L the language
given by

L = {a1}∗{a2}∗{a3}∗ · · ·
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then there is a bijection from the elements of L to partitions of integers, that
maps elements of weight n to partitions of n. We deduce that the generating
function for integer partitions is

1

1− x
1

1− x2
1

1− x3
· · · =

∏
n≥1

1

1− xn
.

We want to relate the number of partitions with only odd parts to parti-
tions where all parts are distinct. The tool is generating series.

The generating series for partitions with all parts odd is the generating
series for the language

{a1}∗{a3}∗{a5}∗ · · · ;

thus it is ∏
n≥1

1

1− x2n−1
.

The generating function for the partitions with all parts distinct is the
generating series of

D = (ε+ a1)(ε+ a2)(ε+ a3) · · · ;

thus it is ∏
n≥1

(1 + xn).

(Note that D factorizes uniquely even though its factors contain ε.)

5.1.1 Lemma. The number of partitions of n with all parts odd is equal to
the number of partitions of n with all parts distinct.

Proof. We have∏
n≥1

1

1− x2n−1
=

∏
n≥1(1− x2n)∏
n≥1(1− xn)

=
∏
n≥1

1− x2n

1− xn
=
∏
n≥1

(1 + xn).

5.2 Multivariate Series

Up till now we have been distinguishing objects by a single parameter, for
example we have counted words by length. If we are considering partitions of
an integer, we might consider the number of parts, or the size of the largest
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part together with the sum of the parts. If we take the view that we have
formed our generating series by associating a monomial xn to each object
with weight n, now we will associate the monomial

xα = xα1
1 · · ·x

αk
k

to each object with weights (α1, . . . , αk).

By way of example, we could weight partitions of n with exactly k parts
by the ordered pair (n, k). The coefficient of tkxn in∏

i≥1

(1− txi)−1

is equal to the number of partitions of n with exactly k parts. This is a
generating series in two variables.

A series ∑
i,j≥0

ci,jx
iyj

can be rewritten in the form ∑
j≥0

(∑
i≥0

ci,jx
i

)
tj

which is a power series in t with coefficients from the ring of power series in
x. For example, the coefficient of tk in

∏
i≥1(1− txi)−1 will be the generating

series for partitions with exactly k parts, weighted by the sum of their parts.

5.3 Extracting Coefficients

The following lemma will allow us to extract the coefficient of tk in the series∏
i≥1(1− txi)−1.

5.3.1 Lemma. We have

∏
r≥0

1− atxr

1− txr
=
∑
n≥0

tn
n∏
k=1

1− axk−1

1− xk
.
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Proof. Denote left side of this identity by F (t), and suppose that

F (t) =
∑
n≥0

cnt
n.

Then c0 = 1 and

F (xt) =
1− t
1− at

F (t).

Hence
(1− at)F (xt) = (1− t)F (t)

and if we equate the coefficients of xn in each side of this, we find that

xncn − axn−1cn−1 = cn − cn−1.

It follows easily that

cn =
n∏
k=1

1− axk−1

1− xk
.

If we substitute 0 for a and xt for t in this lemma, we obtain∏
r≥1

(1− txr)−1 =
∑
n≥0

tnxn
n∏
k=1

(1− xk)−1.

Hence

xk
k∏
i=1

(1− xi)−1

is the generating series for partitions with exactly k parts, weighted by the
sum of their parts.

5.4 Ferrer’s Diagrams

There are a number of interesting facts about integer partitions which can
be derived from what is called the Ferrer’s diagram of a partition. These are
best introduced by an example: Figure 5.1 shows the Ferrer’s diagrams for
two partitions of 10. Each row corresponds to a part of the partition, where
the number of dots in a row is the size of the part, and the larger parts come
first. The number of Ferrer’s diagrams with n dots is equal to the number of
partitions of n.
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Figure 5.1: Two Ferrer’s Diagrams

The second diagram in 5.1 is the transpose of the first, in which case we
say that the second partition is the conjugate of the first. A partition may
be self-conjugate. If π and π∗ are conjugate partitions, the number of parts
of π is equal to the largest part of π∗.

5.4.1 Lemma. The number of partitions of n with largest part k is equal to
the number of partitions of n with exactly k parts.

The generating series for partitions with all parts of size i, weighted by
size, is

1

1− xi
and therefore the generating series for partitions with largest part less than
k is

k−1∏
i=1

1

1− xi

and the generating series for partitions with largest part equal to k is

xk

1− xk
k−1∏
i=1

1

1− xi
= xk

k∏
i=1

1

1− xi
.

This is also the generating series for partitions with exactly k parts—by
conjugacy or by our computation in the previous section.

5.5 Pentagonal Numbers

A pentagonal number is an integer of the form

k

2
(3k − 1),
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where k may be positive or negative. We define a series F (t)

F (x) =
∞∑

k=−∞

(−1)ktk(3k−1)/2;

this is a formal power series despite appearances. It is an amazing (and
useful) fact that this series is the reciprocal of the generating series for parti-
tions. This was first observed by Euler, and is known as Euler’s pentagonal
number theorem.

5.5.1 Theorem. We have∏
j≥0

(1− tj) =
∞∑

k=−∞

(−1)ktk(3k−1)/2.

Proof. We use Ferrer’s diagrams. Define the base of a partition to be the
size of the last row of its Ferrer’s diagram. If

n = a1 + · · ·+ ak

is a partition of n, the slope of the partition is the greatest integer j such
that aj = a1 + 1− j. The slope is clearly at most the number of parts of the
partition; if equality holds we may say that the slope and base overlap.

If π is a partition of n with base b and slope s and the slope and base
overlap, then

n = b+ · · ·+ (b+ s− 1) = sb+

(
s

2

)
.

If b = s or b = s + 1 this implies that n is pentagonal. In other words, n is
pentagonal is and only if its base and slope overlap and b ∈ {s, s+ 1}.

The left hand side of our identity is the generating series for the number
of partitions of n into an even number of distinct parts, less the number of
partitions of n into an odd number of distinct parts.

If s < b, move the slope down to form a new base. Otherwise move the
base up to form a new slope. There is only a problem if b ∈ {s, s + 1} and
the base and slope overlap, but in this case n is pentagonal.
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Chapter 6

q-Theory

6.1 q-Counting

Let q be a variable. We define the polynomial [n] by

[n] =
qn − 1

q − 1
;

if the variable q is not clear from the context, we may write [n]q. We define
the q-factorial [n]! recursively for non-negative integers n by

[0]! := 1, [n+ 1]! := [n+ 1] [n]!.

Finally the q-binomial coefficient
[
n
k

]
is given by[

n

k

]
:=

[n]!

[k]![n− k]!
.

Again we may write [n]q! and
[
n
k

]
q

when necessary. Verify that[
n

k

]
=

[
n

n− k

]
.

If q = 1, then [
n

k

]
q

=

(
n

k

)
.
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6.1.1 Lemma. For all non-negative integers n and k,[
n

k

]
q−1

= q−k(n−k)
[
n

k

]
q

.

We have not one, but two, analogs of the basic binomial recurrence.

6.1.2 Lemma. For all non-negative integers n and k,[
n

k

]
= qk

[
n− 1

k

]
+

[
n− 1

k − 1

]
=

[
n− 1

k

]
+ qn−k

[
n− 1

k − 1

]
.

It follows from this that
[
n
k

]
is a polynomial in q with non-negative integer

coefficients. We will see eventually that it is a generating series for some
numbers we have already met.

6.2 q-Commuting Variables

Let F denote the field R(q) of real Laurent series in the variable q. We are
going to work with Laurent series with coefficients from F; we view this set
of series as a vector space over F. (It is also a field in its own right, but this
will not be important to us.)

6.2.1 Theorem. If A and B are operators such that BA = qAB and q
commutes with A and B, then

(A+B)n =
n∑
k=0

[
n

k

]
AkBn−k.

Proof. Use induction and one of the recurrences above.

A natural question here is whether such operators exist. If

C(t) =
∑
n

cnt
n

then we define Q to be the linear operator that sends C(t) to C(qt); thus the
coefficient of tn in C(qt) is qncn. We will use Mt to denote the operation of
multiplication by t; thus Mt maps C(t) to tC(t). Since

QMt(F (t)) = qtF (qt), MtQ(F (t)) = tF (qt)
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it follows that Q and Mt are q-commuting variables:

QMt = qMtQ.

Suppose that in Theorem 6.2.1 we take

A := MtQ, B = Q.

Then BA = qAB and

AkBn−k1 = Ak1 = q(
k
2)tk

and
(A+B)n1 = (1 + t)(1 + qt) · · · (1 + qn−1t).

This yields the following result, often referred to as the q-binomial identity.

6.2.2 Corollary. We have

n−1∏
i=0

(1 + qit) =
n∑
k=0

[
n

k

]
q(

k
2)tk.

This result suggests that it might be appropriate to view
∏n−1

i=0 (1 + qit)
as a q-analog of the power (1 + t)n. We define

(a; q)n :=
n∏
i=1

(1− aqi−1)

with the understanding that (a; q)0 = 1. Thus

n−1∏
i=0

(1 + qit) = (−t; q)n.

6.3 q-Differentiation

We derive a q-analog of the identity

1

(1− t)n
=
∑
j≥0

(
n+ j − 1

j

)
tj.
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to do this we use the so-called q-derivative operator.
If f(t) is a polynomial in t (over F), then we define the q-derivative Dq

by

Dq(f(t)) =
f(qt)− f(t)

qt− t
.

If F (t) is a Laurent series, we define Dq(F (t)) to be the series we get by
applying the q-derivative term-by-term. We note that if n ≥ 1 then

Dq(t
n) = [n]tn−1

and Dq(1) = 0.
For practice we note that

Dq((−t; q)n) =
1

qt− t
((−qt; q)n − (−t; q)n)

=
1

qt− t
(1 + qnt− 1− t)(−qt; q)n−1

= [n](−qt; q)n−1

We also check that

Dq((t; q)
−1
n ) =

1

qt− t

(
1

(qt; q)n
− 1

(t; q)n

)
=

1

qt− t
(1− t)− (1− qnt)

(−t; q)n+1

= [n](t; q)−1n+1.

6.3.1 Lemma. We have

n−1∏
i=0

1

1− qit
=
∑
j≥0

[
n+ j − 1

j

]
tj.

Proof. The left side here is (t; q)−1n . It is clear that this is a power series; we
write

(t; q)−1n =
∑
j≥0

F (n, j)tj.

Since (t; q)−11 = (1− t)−1, we see that when j ≥ 0 we have

F (1, j) = 1.
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We aim to prove by induction on n that F (n, j) =
[
n+j−1

j

]
, and we have

just seen that this is true when n = 1. To get further we note that

Dq((t; q)
−1
n ) = [n](t; q)−1n+1 =

∑
j≥0

[n]F (n+ 1, j)tj

while
Dq

(∑
j≥0

F (n, j)tj
)

=
∑
j≥1

F (n, j)[j]tj−1.

Comparing coefficients of tj in the two power series, we see that

F (n+ 1, j) =
[j + 1]

[n]
F (n, j + 1).

By induction F (n, k) =
[
n+k−1

k

]
for all k, and therefore

F (n+ 1, j) =
[j + 1]

[n]

[
n+ j

j + 1

]
=

[
n+ j

j

]
.

We should admit that this lemma can be derived from Lemma 5.3.1,
thus avoiding q-derivatives. Note that we could use essentially the same
proof strategy to show that the coefficient of tj in (1 − t)−n is

(
n+j−1

j

)
; this

would be easier because we would be using the derivative rather than the
q-derivative.

6.3.2 Theorem. The generating series for partitions with at most k parts,
the largest of which is at most `, is

[
k+`
k

]
.

Proof. From the previous lemma we have that

∏̀
i=0

1

1− qit
=
∑
j≥0

[
`+ k

k

]
tk

and basically the problem is to interpret the left-hand side. We know that

∏̀
i=1

1

1− qit

is the generating series for the number of partitions with largest part at most
`, weighted by the sum of parts and the size of the largest part. Hence the
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coefficient of qntk in this series is the number of partitions with largest part
at most `, such that the sum of the parts is n and size of the largest part is
k. It follows that the coefficient of qntk in

1

1− t
∏̀
i=1

1

1− qit

is the number of integer partitions of n with largest part at most ` and largest
part at most k. So the coefficient of tk is the generating series for integer
partitions with at most k parts, the largest of which is `, and weighted by
the sum of their parts.

6.4 The q-Exponential

We define the q-exponential series expq(t) by

expq(t) :=
∑
n≥0

tn

[n]!
.

We see immediately that

Dq(expq(t)) = expq(t)

in analogy with the usual exponential.
There are many reasons to study the q-exponential, the most immediate

of which is a close connection with the generating series for integer partitions.
To establish this we will use the following.

6.4.1 Lemma. If m is fixed, then

lim
N→∞

[
N

m

]
=

m∏
i=1

1

1− qi
.

Proof. Recall that
[
N
m

]
is the generating series for partitions with largest part

at most m and at most N −m parts, weighted by size. Accordingly

lim
N→∞

[
N

m

]
is just the generating series for partitions with largest part at most m,
weighted by size, and therefore it is equal to the given product.
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6.4.2 Theorem. We have

expq

(
t

1− q

)
=
∏
n≥0

(1− qnt)−1.

Proof. We take the limit as n tends to infinity in Lemma 6.3.1. The left-hand
side becomes ∏

i≥0

1

1− qit
,

while the right-hand side becomes

∑
j≥0

tj

(q − 1)j[j]!
= expq

(
t

1− q

)
.

One of the most important properties of the usual exponential is that

exp(a+ b) = exp(a) exp(b);

this is very nearly true for the q-exponential.

6.4.3 Lemma. If BA = qAB, then expq(A+B) = exp(A) exp(B).

6.5 A Reciprocal

Since

[n]q−1 ! = q−(n
2)[n]q!

it follows that

expq−1(t) =
∑
n≥0

q(
n
2)

[n]!
tn.

This allows us to present the main result of this section:

6.5.1 Theorem. We have

expq(t) expq−1(−t) = 1.
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Proof. Let A = Mt and B = −MtQ. Then BA = qAB and expq(A + B) =
expq(A) expq(B). Now

(A+B)n1 =

{
1, n = 0;

0, n > 0,

from which we see that expq(A) expq(B) = 1. Since

Bn1 = (−t)nq(
n
2)

we have

expq(B)1 =
∑
n≥0

q(
n
2)

[n]!
(−t)n

and so the result follows.

Another proof of this result follows using Corollary 6.2.2, Lemma 6.4.1
and Theorem 6.4.2.
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q-Practice

7.1 Squares

The Durfee square of a partition π is the largest square in its Ferrer’s diagram
that contains the top left-hand corner. Thus the Durfee square has size d if
d is the largest integer such that π contains at least d parts of size at least d.
Each partition π with Durfee square of side d decomposes into three pieces:

(a) The Durfee square.

(b) A partition π1 with at most d parts.

(c) A partition π2 with largest part at most d.

Further
|π| = d2 + |π1|+ |π2|.

Consequently the generating series for partitions with Durfee square of side
d is

qd
2

d∏
i=1

1

(1− qi)2
,

which leads to the identity

∑
d≥0

qd
2

d∏
i=1

1

(1− qi)2
=
∏
i≥1

1

1− qi
.

We can refine this. Consider a partition π with at most n parts each at
most n, and with Durfee square of side d. Then in the above decomposition
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π1 has at most d parts, each of size at most n− d and π2 has at most n− d
parts, each of size at most d. Hence the generating series for such partitions
π is

qd
2

[
n

d

][
n

n− d

]
and therefore we have

n∑
d=0

qd
2

[
n

d

]2
=

[
2n

n

]
,

since both sides equal the generating series for partitions whose Ferrer’s di-
agrams fit in an n × n box. (This result is also an easy consequence of the
q-Vandermonde identity.

7.2 Diagonals

There is a second decomposition which we need. If the Durfee square of π
has side d, we can view π as the union of two partitions, each having exactly
d distinct pieces, which overlap in the d diagonal elements of the Durfee
square.

The generating series for partitions π with distinct parts, weighted by |π|
and the number of parts, is the coefficient of tk in

A(t) :=
∏
i≥1

(1 + qit).

The generating series for partitions π with distinct parts, weighted by |π| less
the number of parts and the number of parts, is the coefficient of tk in∏

i≥1

(1 + qi−1t) = A(q−1t)

From the above decomposition we conclude that the generating series for all
partitions, weighted by size, is the constant term in

A(t)A(q−1t−1).

In other terms ∏
i≥1

1

1− qi
=

〈
1,
∏
i≥1

(1 + tqi)(1 + t−1qi−1)

〉
.

It is not clear what use this might be, but if it is useful then this suggests that
the coefficients of tk in A(t)A(q−1t−1) when k 6= 0 might also be interesting.
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7.3 Jacobi’s Triple Product

The following identity is known as Jacobi’s triple product identity. It has
a number of applications, one of which is a very efficient recurrence for the
number of partitions of an integer.

7.3.1 Theorem.

∞∑
n=−∞

q(
n+1
2 )tn =

∏
n≥1

(1− qn)(1 + tqn)(1 + t−1qn−1).

Proof. Let F (t) be defined by

F (t) :=
∏
n≥1

(1 + tqn)(1 + t−1qn−1).

Then

F (qt) =
∏
n≥1

(1 + tqn+1)(1 + t−1qn−2)

=
1 + t−1q−1

1 + tq

∏
n≥1

(1 + tqn)
∏
n≥1

(1 + t−1qn−1)

= q−1t−1F (t).

Assume

F (t) =
∞∑
−∞

fn(q)tn.

Then
∞∑
−∞

fn(q)qntn = F (qt) = q−1t−1F (t) = q−1t−1
∞∑
−∞

fn(q)tn

whence fn(q) = qnfn−1(q) and fn(q) = q(
n+1
2 )f0(q).

Since f0(q) is the constant term in F (t), it follows from the previous
section that

F (t) =
∏
i≥0

1

1− qi
·
∞∑
−∞

q(
n+1
2 ).
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7.4 A Second Proof

We rederive the triple product identity. Define operators A and B on poly-
nomials by

A = MtQ, B = Q.

Then BA = qAB and

(A+B)m+n =
m+n∑
k=0

[
m+ n

k

]
AkBm+n−k

whence

A−m(A+B)m+n =
m+n∑
k=0

[
m+ n

k

]
A−k−mBm+n−k

=
n∑

`=−m

[
m+ n

m+ `

]
A`Bn−`

By applying both sides of this to 1, we get

(1 + qmt−1)(1 + qm−1t−1) · · · (1 + qt−1)(1 + t) · (1 + qt) · · · (1 + qnt)

=
n∑

`=−m

[
m+ n

m+ `

]
q(

`
2)t`. (7.4.1)

Now assume m = n. Then

lim
n→∞

[
2n

n+ `

]
=
∏
i≥1

1

1− qi

and so

lim
n→∞

n∑
`=−n

[
2n

n+ `

]
q(

`
2)t` =

∏
i≥1

1

1− qi
·
∞∑
−∞

q(
`
2)t`.

If we set m = n in the left-hand side of (7.4.1) and let n go to infinity, the
result is ∏

n≥1

(1 + tqn)(1 + t−1qn−1),

as required.
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7.5 Euler’s Pentagonal Number Theorem

If S is a set of partitions, let p(S, n) denote the number of partitions of n in
S. Let D denote the set of all partitions with distinct parts. Let E denote
the partitions with an even number of parts and let O denote the partitions
with an odd number of parts.

7.5.1 Theorem.

p(D ∩ E , n)− p(D ∩O, n) =

{
(−1)m, n = m(3m± 1)/2;

0, otherwise.

Proof. Given in lectures—move the smallest part to become the rightmost
diagonal, or vice versa.

It is useful to express result this in generating series. The generating series
for partitions with distinct parts, weighted by size and number of parts, is∏

n≥1

(1 + tqn)

and consequently the generating series for p(D ∩ E , n)− p(D ∩O, n) is∏
n≥1

(1− qn)

From the previous theorem we deduce that

∏
n≥1

(1− qn) =
∞∑

n=−∞

(−1)nqn(3n+1)/2. (7.5.1)

This points us in two directions. First we will show that this is a conse-
quence of Jacobi’s triple product identity. Then we will use it to derive an
efficient recurrence for the number of partitions of an integer.

In the triple product identity, substitute q3 for q and −q−1 for t. The
right side becomes

∞∑
n=−∞

q3n(n+1)/2(−1)nq−n =
∞∑

n=−∞

(−1)nqn(3n+1)
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while the left side turns into∏
n≥1

(1− q3n)(1− q3n−1)(1− q3n−2) =
∏
n≥1

(1− qn).

Thus (7.5.1) follows.
Next for the recurrence. From (7.5.1) we have

∞∑
k=−∞

(−1)kqk(3k+1)
∏
k≥1

1

1− qk
= 1.

If p(n) denotes the number of partitions of n and S(n) denotes the set of all
integers k such that |k(3k + 1)/2| ≤ n, then the coefficient of qn in the left
side of the previous equation is∑

k∈S(n)

(−1)kp
(
n− 1

2
k(3k + 1)

)
and so this sum is zero when n > 0. Suppose, for example, that n = 10.
Then

S(n) = {5, 1, 0, 2, 7}

(where k runs from −2 to 2) and so

p(5)− p(9) + p(10)− p(8) + p(3) = 0.

Therefore

p(10) = −p(3)− p(5) + p(8) + p(9),

which is consistent with the following table.

7.6 Rogers and Ramanujan

We introduce two of the most important identities concerning partitions. We
say a partition is 2-distinct if any two parts differ by by at least two. First
we determine the generating series for 2-distinct partitions. The key is to
observe that if

n1, . . . , nk
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n p(n)
1 1
2 2
3 3
4 5
5 7
6 11
7 15
8 22
9 30
10 42
11 56
12 77
13 101
14 135
15 176
16 231
17 297
18 385
19 490
20 627

Table 7.1: The number of integer partitions
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is an increasing sequence whose terms are 2-distinct and sum to n, then the
sequence

n1 − 1, . . . , nk − (2k − 1)

is non-decreasing and sums to n − k2. This gives us a bijection between
2-distinct partitions of n with k parts and partitions of n− k2 with at most
k parts. The generating series for partitions with at most k parts

k∏
i=1

1

1− qi

and consequently the generating series for 2-distinct partitions with exactly
k parts is

qk
2

k∏
i=1

1

1− qi
.

We conclude that the generating series for 2-distinct partitions is

∑
k≥0

qk
2

(1− q) · · · (1− qk)
.

As an exercise you may prove that the generating series for 2-distinct parti-
tions where the smallest part has size at least two is

∑
k≥0

qk
2+k

(1− q) · · · (1− qk)
.

7.6.1 Theorem.

∑
k≥0

qk
2

(1− q) · · · (1− qk)
=
∏
i≥1

1

(1− q5i−4)(1− q5i−1))∑
k≥0

qk
2+k

(1− q) · · · (1− qk)
=
∏
i≥1

1

(1− q5i−3)(1− q5i−2)
.
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7.7 Proving Rogers and Ramanujan

We prove the Rogers-Ramanujan identities. First we define five families of
polynomials.

sn(q) =
n∑
j=0

qj
2

[
n

j

]

tn(q) =
n∑
j=0

qj
2+j

[
n

j

]

σn(q) =
∞∑

j=−∞

(−1)jqj(5j+1)/2

[
2n

n+ 2j

]

σ∗n(q) =
∞∑

j=−∞

(−1)jqj(5j+1)/2

[
2n+ 1

n+ 2j + 1

]

τn(q) =
∞∑

j=−∞

(−1)jqj(5j−3)/2
[
2n+ 1

n+ 2j

]
The proof of our first lemma is left as an exercise.

7.7.1 Lemma. The following recurrences hold:

sn(q) = sn−1(q) + qntn−1(q)

tn(q)− qnsn(q) = (1− qn)tn−1(q).

7.7.2 Lemma. σn(q) = σ∗n(q).

Proof. Since [
2n+ 1

n+ 2j + 1

]
=

[
2n

n+ 2j

]
+ qn+2j+1

[
2n

n+ 2j + 1

]
we have

σ∗n(q)− σn(q) =
∞∑

j=−∞

(−1)jqj(5j+1)/2qn+2j+1

[
2n

n+ 2j + 1

]

= qn+1

∞∑
j=−∞

(−1)jqj(5j+5)/2

[
2n

n+ 2j + 1

]
.
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Now
[
n
k

]
=
[
n

n−k

]
and so the sum in the last line is equal to

∞∑
j=0

(−1)jqj(5j+5)/2

[
2n

n+ 2j + 1

]
+

−1∑
j=−∞

(−1)jqj(5j+5)/2

[
2n

n+ 2j + 1

]

=
∞∑
j=0

(−1)jqj(5j+5)/2

[
2n

n− 2j − 1

]
+
∞∑
j=0

(−1)−j−1q(−j−1)(5−j))/2
[

2n

n− 2j − 1

]
= 0.

The lemma follows at once.

7.7.3 Lemma. The following recurrences hold:

σn(q) = σn−1(q) + qnτn−1(q)

τn(q)− qnσn(q) = (1− qn)τn−1(q).

Proof. For the first, start with σn(q)−σ∗n−1(q) and use one of the recurrences
for the q-binomial coefficient.

For the second, you are on your own.

We have shown that σn(q) and τn(q) satisfy the same recurrences as sn(q)
and tn(q); since

s0(q) = σ0(q) = t0(q) = τ0(q) = 1,

it follows that for all non-negative integers n,

sn(q) = σn(q)

and
tn(q) = τn(q).

Taking the limit as n tends to infinity in each of these, we recover the Rogers-
Ramanujan identities.

68



Chapter 8

Graphs

8.1 Graphs, Paths and Cycles

A graph G consists of set of vertices V (G) and a set of edges E(G), where
each edge is an unordered pair of vertices. If u, v ∈ V (G) and uv ∈ E(G),
we say ht at u and v are adjacent vertices, or that v is a neighbour of u. We
write u ∼ v. The set of neighbours of u is the neighbourhood of u in G; we
may denote it by NG(u). The number of neighbours of u in G is the degree or
valency of u. We denote it by deg(u) (or perhaps degG(u)). If all vertices in
G has the same degree, then we say that G is regular; if the common degree
of a regular graph is d, we may say that G is d-regular.

If G is a graph, its complement G has the same vertex set as G but distinct
vertices u and v are adjacent in G if and only if they are not adjacent in G.

The complete graph Kn has n vertices, and each pair of vertices is an
edge. Thus it has

(
n
2

)
edges. An empty graph is a graph no edges. The

empty graph on n vertices is the complement of complete graph Kn.

We offer some more examples. The n-cube Qn is defined as follows. Its
vertices are the 01-vectors of length n; two vectors are adjacent if and only
if they differ in exactly one coordinate. We note that Qn has 2n vertices and
is regular with degree n. A graph is cubic if it is regular with degree three.

Let C be a subset of the integers modulo n such that 0 /∈ C and, if a ∈ C
then −a ∈ C. The circulant with connection set C has the integers modulo
n as its vertices, where i ∼ j if and only if j − i ∈ C. If C = {−1, 1}, then
the corresponding circulant is the cycle Cn.

We say that H is a subgraph of G if V (H) ⊆ V (G) and E(H) is a subset
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+-+

--+

++-

+--

---
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+++

Figure 8.1: The 3-Cube

Figure 8.2: The Petersen Graph K5:2
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Figure 8.3: Two Circulants

of the edges in G that join two vertices in V (H). There are two special cases.
If V (H) = V (G), then H is a spanning subgraph of G; if E(H) consists of
all edges in G that join two vertices of H, it is an induced subgraph. An
induced subgraph is determined by its vertex set, a spanning subgraph by
its edge set. (So if H is an induced spanning subgraph of G, then H = G.
If G has n vertices and m edges, then it has 2n induced subgraphs and 2m

spanning subgraphs.)

A walk of length k in a graph G is a sequence of vertices u0, . . . , uk such
that ui ∼ ui+1 for i = 0, . . . , k − 1. We say that the walk starts at u0 and
finishes at uk. A graph G is connected if, for each pair of vertices in G, there
is a walk in G from u to v. A subgraph P of G is a path on k vertices if it
is the subgraph induced by a walk that does not use any vertex twice. We
use Pk to denote a path with exactly k vertices. Hence a path with at least
two vertices has two vertices of degree one and the rest have degree two.
The vertices of valency one are the end-vertices of the path. A cycle is a
connected 2-regular graph; a cycle in G is a subgraph which is a cycle. We
use Cn to denote the cycle on n vertices.

The distance in G between vertices u and v is the length of the shortest
path that contains u and v.

A directed graph G consists of a set of vertices, a set of arcs Arc(G)
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and two functions head and tail from Arc(G) to V (G). If α ∈ Arc(G) and
head(α) = tail(α), we say α is a loop. If α is not a loop, we may view it as
directed from its tail to its head.

8.2 Components

A component of a graph is a subgraph which is connected, and given this
is maximal under inclusion. Thus a subgraph C is a component if it is
connected and any subgraph of G that contains all vertices and edges of C
and is not equal to C is not connected. Equivalently, C is a component of G
if it is a connected induced subgraph and there are no edges in G that join
a vertex in C to a vertex not in C.

Clearly the vertex sets of the components of G partition V (G). A common
way to construct partitions is to use equivalence relations; we show how this
can be done in this context.

Let say that vertices u and v in G are related, and write u ≈ v, if there
is a walk in G from u to v. It is easy to verify that this relation is reflexive,
symmetric and transitive, that is:

(a) If u ∈ V (G), then u ≈ u.

(b) If u, v ∈ V (G) and u ≈ v, then v ≈ u.

(c) If u, v, w ∈ V (G) and u ≈ v and v ≈ w, then u ≈ w.

The set of vertices that ≈-related to u is the equivalence class of u. The
equivalence classes under ≈ partition V (G), and the subgraph induced by
each equivalence class is connected. Two vertices in distinct equivalence
classes cannot be adjacent.

The following result is a traditional early exercise in graph theory.

8.2.1 Lemma. Let u and v be vertices in G. Then there is a path in G with
u and v as end-vertices if and only if there is a walk in G from u to v.

If e ∈ E(G), then G \ e is the graph with vertex set V (G) and edge set
E(G) \ e. We say that G \ e is obtained by deleting the edge e. If G is
connected and e is an edge of G that lies in a cycle, then G\e is connected.
(Why?) If G is connected then it has spanning subgraphs that are connected,
G itself for example. Suppose H is a connected spanning subgraph of G with
as few edges as possible. Then H cannot contain any cycles.
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8.3 Trees

A connected graph with no cycles is called a tree. A graph with no cycles
is a forest; each component of a forest is a tree. A spanning subgraph of G
which is a tree is spanning tree of G.

The following theorem provides some of the most important properties of
trees.

8.3.1 Theorem. Let T be a tree.

(a) If T has at least two vertices, it has at least two vertices of degree one.

(b) |E(T )| = |V (T )| − 1.

(c) Any two vertices in T are joined by a unique path.

(d) If we add an edge joining two vertices in T , we create a cycle.

(e) Each edge in T is a bridge.

Proof.

8.3.2 Lemma. A tree with at least two vertices contains at least two vertices
with degree one.

Proof. Let P be a path in our tree that is as long as possible, and let u
be one of the two vertices of P whose degree in P is one. Suppose w is a
vertex in G adjacent to u, distinct from the vertex v in P adjacent to u.
If w ∈ V (P ) then the sub-path of P that joins u to w together with the
edge uw forms a cycle. However if w /∈ V (P ), then the subgraph induced by
V (P )∪w contains a path that is longer than P . So we are forced to conclude
that u has degree one in G. It follows that both vertices of degree one in P
has degree one in G.

Suppose |V (T )| = v. From (a), a tree has a vertex of degree one; if we
delete this vertex then the graph left over is connected and has no cycles. So
it is a tree and by induction it has v − 2 edges.

Next, since T is connected, any two vertices are joined by a path. Suppose
P and Q are distinct paths joining u to v. As we move along P from u, let
a be the first vertex in P whose neighbour in P is not on Q, and let b be the
next vertex on P that is also on Q. Then the subpath of P going from a to
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b, and the subpath of Q from b form a cycle. Therefore any two vertices in
a tree are joined a unique cycle.

If we add an edge e joining vertices u and v, then e together with the
unique uv-path forms a cycle.

Suppose e ∈ E(T ) and e = {u, v}. If T \ e is connected, then there is a
path in T \ e from u to v, together with e this path gives a cycle in T .

8.3.3 Lemma. Let G be a connected graph and suppose H is a spanning
subgraph that has no cycles but any spanning subgraph of G that properly
contains H does contain a cycle. Then H is a spanning tree.

Proof. Suppose H has the form described. It will suffice if we prove that H
is connected.

Assume by way of contradiction that H is not connected and let A be the
vertex set of a component of H, and let B be the complement of A in V (G).

Thus (A,B) is a partition of V (G) with two non-empty parts and, since
G is connected there must be an edge e that joins some vertex a in A to
some vertex b in B. Let K be the subgraph we get by adding e to the edge
set of H. By hypothesis K contains a cycle, and we see that this cycle must
contain e. By our choice of A and B, the two vertices that form e lie in
different components of H. Since e lies in a cycle, it follows that the two
vertices in e must be joined by a path in H, which contradicts the fact that
they lie in separate components of H. We are forced to conclude that H
must connected.

8.3.4 Corollary. A forest with v vertices and c components has exactly v−c
edges.

8.4 Directed Graphs

Roughly speaking a directed graph is a graph where each edge is assigned a
direction, and is then called an arc. However we also allow loops and multiple
arcs joining the same vertices, so setting up is more expensive. Formally a
directed graph consists of a set of vertices V , a set of arcs E and two relations
on V ×E. A vertex u and and arc a are incident under the first relation if u
is the head of the arc a. They are incident with respect to the second if u is
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the tail of a. If the out-degree of a vertex u is the number of arcs with tail
u; the in-degree is the number of arcs with u as head.

If u is both the head and the tail of a, we call a a loop. We may denote
an arc with tail u and head v by the ordered pair (u, v).

A walk in a directed graph may be defined as an alternating sequence of
vertices

u0, a1, u2, . . . ak, uk

such that u0 and uk are vertices and ui and ui+1 are respectively the tail and
head of ai, for all i. The length of a walk is the number of arcs that it uses.
A path in a directed graph is the directed subgraph formed by the vertices
and arcs of a walk that does not visit the same vertex twice. Thus a path in
a directed graph has a direction. A cycle is the directed subgraph formed by
the vertices and arcs of a walk which starts and finishes at the same vertex,
but does not visit any other vertex twice. Hence cycles are also directed. A
cycle in a directed graph may have length one or two.

If D is a directed graph that its underlying graph G has vertex set V (D),
where two vertices are adjacent in G is they are distinct and are joined by an
arc in D. (It should possibly be called the underlying simple graph, but it is
all that we will need.) A directed graph is weakly connected if its underlying
graph is connected. A weak component is the directed subgraph induced by
the vertices in a component of the underlying graph.

A directed graph is strongly connected if for each pair of vertices u and v,
there is a walk in D from u to v. It is not hard to show that this is equivalent
to requiring that there be a path in D from u to v for each pair of vertices
u and v. A strong component of D is a directed induced subgraph that is
strongly connected and, given this, has as many vertices as possible. If D is
not strongly connected then there must be a partition (A,B) of V (D) with
two non-empty cells such that no arc of D goes from A to B. A directed
path is weakly connected but not strongly connected, each vertex is a strong
component. A directed cycle is strongly connected.

8.5 Isomorphisms and Automorphisms

Let G and H be graphs. A map ψ from V (G) to V (H) is an isomorphism if:

(a) it is a bijection;
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(b) if u, v ∈ V (G), then ψ(u) and ψ(v) are adjacent in H if and only if u
and v are adjacent in G.

It follows that if ψ is an isomorphism, then ψ−1 exists and is an isomorphism
from H to G. An automorphism is an isomorphism from a graph to itself.
The set of all automorphisms of G is called the automorphism group of G,
and is denoted by AutG. The automorphism group is never empty because
it contains the identity permutation in all cases.

Suppose G and H are graphs and ψ is an isomorphism from G to H.
Assume u ∈ V (G). Then:

• The degree in H of ψ(u) equals the degree of u in G.

• The subgraph of H induced by the set

{f(v) : v ∼ u}

is isomorphic to the subgraph induced by the neighbors of u in G.

• The number of copies of Kr in H that contain ψ(u) equals the number
of copies in G that contain u.

• If u and v are distance k in G, then ψ(u) and ψ(v) are at distance k in
H.

• The number of vertices at distance k from u which have degree ` is
equal to the number of vertices at distance k from ψ(u) which have
degree `.

This list is not meant to be complete, but it should give some of the flavor.
You should verify these assertions.

An adjacency matrix of a graph G with v vertices is a 01-matrix of order
v × v with ij-entry equal to 1 if and only if vertices i and j are adjacent in
G. The exact form of the matrix will depend on the ordering of the vertices
of G. For example, you may verify that

A =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 , B =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
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are both adjacency matrices for C4. If e1, . . . , ev is the standard basis for Rv,
then we have the following fundamental relation:

Aei =
∑
j∼i

ei.

If α is an automorphism of G, then it is a permutation of V (G) and we
will denote the image of the vertex u under α by uα (or even by uα when it
is a subscript). Suppose v = |V (G)|. There is a unique linear mapping from
Rv to itself that sends ei to eiα. Let P (α) be the matrix that represents this
linear mapping (relative to the standard basis); thus

P (α)ei = eiα, i ∈ V (G).

If i ∈ V (G), let N(i) denote the set of neighbors of i in G; we call it the
neighborhood of i in G.

8.5.1 Theorem. Let G be a graph with adjacency matrix A. Let α be a
permutation of V (G) and let P = P (α) be the permutation matrix that
represents it. Then α ∈ AutG if and only if PA = AP .

Proof. Suppose i ∈ V (G). Then

PAei = P
∑
j∼i

ej =
∑
j∼i

Pej =
∑
j∼i

ejα

while
APei = Aeiα =

∑
j∼iα

ej.

So PAei = APei if and only if

{jα : j ∼ i} = {j : j ∼ iα}.

Thus equality holds if and only if each neighbor of iα is the image under α
of a neighbor of i, or equivalently, if u ∼ i if and only if uα ∼ iα.

It follows that APei = PAei for all vertices i if and only if α ∈ AutG.

If G and H are graphs with respective adjacency matrices A and B, then
G is isomorphic to H if and only if there is a permutation matrix P such
that P TAP = B (or AP = PB).
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8.6 Coloring

A coloring of a graph G is a map from V (G) to some set of size, such that
adjacent vertices are mapped to distinct elements. If the codomain of the
map has size k, we say that G is k-colorable. If G is k-colorable and there is
no coloring of G using fewer than k colors, we say that the chromatic number
of G is k. We denote the chromatic number of G by χ(G).

A subset S of V (G) is independent if no two vertices in S are adjacent.
If ψ is a coloring of G and i lies in the codomain of ψ, then the set

{u ∈ V (G) : ψ(u) = i}

is an independent set in G. Hence we have:

8.6.1 Lemma. If G is a graph, the following are equivalent:

(a) G is k-colorable.

(b) There is a partition of V (G) with k cells, such that each cell is an inde-
pendent set.

(c) There are k independent sets in G whose union is V (G).

We note the maximum size of an independent set in G by α(G). Note
that for any graph G we have

χ(G)α(G) ≥ |V (G)|

and thus |V (G)|/α(G) is a lower bound on χ(G).
Problems involving chromatic number are important in practice. For

example, consider the exam scheduling problem in its simplest form. We have
set of students and a set V of exams. Construct a graph on V by defining
two exams to be adjacent if there is a student who must take both exams. A
slot is a set of exams, no two of which have a student in common. An exam
schedule then partitions the exams into slots, and we want schedule which
use the minimum possible number of slots. Each slot is an independent set in
the graph we constructed, and the minimum number of slots is its chromatic
number.

A graph is 1-colorable if and only if it is empty. A graph is called bipartite
if it is 2-colourable. All trees are bipartite (prove it) and so are all even cycles.
Odd cycles have chromatic number three.

78



CHAPTER 8. GRAPHS

If a graph is bipartite we can certify this easily by providing the coloring.
If it is not, we have the following:

8.6.2 Lemma. A graph is bipartite if and only it does not contain an odd
cycle.

Proof.

Thus we can certify that a graph is not 2-colorable by providing a sub-
graph which is an odd cycle. If k > 2 then there is no easy way known
to prove that it is not k-colorable. There is one simple result that may be
useful.

8.6.3 Lemma. Let G be a graph. If the maximum valency of a vertex in G
is k, then χ(G) ≤ k + 1.

Proof. We proceed by induction on |V (G)|. Let v be a vertex in G. Since
deleting a vertex cannot increase the maximum valency, by induction we
see that G \ v can be properly (k + 1)-coloured. Since v has degree k, the
neighbours of v are coloured with at most k colours, and so there is colour
that is not used on the neighbours of v. Use it on v.

This bound is tight for odd cycles and complete graphs. A famous the-
orem of Brooks asserts that these are the only connected graphs for which
the bound is tight.

8.6.4 Lemma. Let G be a graph. If the maximum valency of a vertex in G
is k, then α(G) ≥ |V (G)|

k+1
.

Proof.
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Chapter 9

Maps

9.1 Embeddings

In this context we will allow graphs to have loops and parallel edges. This
means we should define a graph to consist of a set of vertices V , a set of
edges E and a relation on V ×E such that each edge is related to one or two
vertices. An edge that is related to exactly one vertex is a loop. A simple
graph is a graph with no loops and no parallel edges.

An embedding of a graph is a surface associates each vertex to a distinct
point on the surface, and to each edge by a continuous curve that does not
cross itself, such that curves representing distinct edges only meet at the point
representing a common vertex (and otherwise the curves are disjoint). If real
rigor were needed (and it will not be) we would assume that our continuous
curves are piecewise linear. A graph is planar if it has an embedding in the
real plane. An embedding of a graph divides a surface into connected pieces,
which we will call faces. A face is a 2-cell if there is a homeomorphism, a
continuous invertible map, from the face to a disc. We are concerned almost
entirely with embeddings where each face is a 2-cell. The graph and the faces
form an incidence structure which we call a map.

For most of this chapter will focus on planar embeddings. It is important
to note that a graph has a planar embedding if and only if has an embedding
on the sphere. (Stereographic projection.) The advantage of working on the
sphere is that there is no “outside” face. In particular each face is a 2-cell.
All faces of a spherical embedding of G are 2-cells if and only G is connected.

If G is connected, each face of an embedding of G is bounded by a closed
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walk in G, which we will call a boundary walk. A cut edge in G is an edge e
such that G\e has more components than G does. (In some places these are
unfortunately called bridges.) If e is not a cut-edge then it lies in exactly two
boundary walks; if it is a cut edge then some boundary walk uses it twice.
Thus an embedding is specified by G and the collection of boundary walks.

Suppose an embedding of G in a surface is given. We can define a dual
graph G∗ with the boundary walks as vertices, where if two boundary walks
have µ edges in common then the corresponding vertices are joined by µ
edges and each cut edge gives rise to a loop. The embedding of G determines
an embedding of G∗ in the same surface, and (G∗)∗ is equal to G. It may
happen that G and G∗ are isomorphic. Note that there is a natural bijection
between E(G) and E(G∗) and in fact we will often identify the edge sets of
G and its dual.

If G has an embedding on a surface and e ∈ E(G), then G \ e can be
embedded on the same surface. Hence all subgraphs of G can be embedded
on this surface. We also see that (G \ e)∗ has an embedding, and this leads
us to ask for a clear description of (G\ e)∗.

If π is a partition of V (G), then G/π is the graph defined as follows. The
vertices of G/π are the cells of π and the edges of G/π are the edges of G.
An edge of G/π is incident with a cell C of π if there is a vertex in C incident
with it in G. If each cell of π is connected we say that G/π is obtained by We
say that by contracting each cell to a vertex. If one cell of π is the edge e and
all other cells are singletons, we write G/e rather than G/π and we say that
G/e is obtained by contracting e. Note that the definition of contraction has
nothing to do with embeddings, but if G has an embedding and a dual G∗,
then

(G\ e)∗ = G∗/e.

Thus, in this case, contraction is the dual of deletion.

9.2 Counting

The degree of a face is the length of the corresponding closed walk. In the
exercises you are asked to prove that if di denotes the degree of the i-th
vertex of G, then ∑

i

di = 2|E(G)|. (9.2.1)

Hence we have:
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9.2.1 Lemma. Let G be a graph embedded in a surface. If d∗i denotes the
degree of the i-th face of G, then∑

i

d∗i = 2|E(G)|.

Now a theorem of Euler.

9.2.2 Theorem. If the connected graph G has an embedding in the plane
with face set F (G), then

|V (G)| − |E(G)|+ |F (G)| = 2.

Proof. We proceed by induction on the number of edges. Suppose G has
exactly n vertices. Then it has at least n − 1 edges, with equality if and
only if it is a tree. An embedding of a tree has exactly one face, and so the
theorem holds.

Suppose that |E(G)| = m > n− 1, let T be a spanning tree of G and let
e be an edge of G not in T . The embedding of G determines an embedding
of G\ e, by induction the number of faces of this embedding is

2− n+ (m− 1).

When we recover the original embedding of G by restoring the edge e, some
face (of G \ e) is divided in two. Hence the number of faces increases by 1,
and so the theorem follows by induction.

9.2.3 Corollary. Let G be a connected graph and let δ∗ denote the minimum
degree of a face in a given planar embedding of G. Then

(|E(G)| − |V (G)|+ 2)δ∗ ≤ 2|E(G)|;

If equality holds then all faces of the embedding have the same degree.

Proof. From Lemma 9.2.1 we have

|F (G)|δ∗ ≤ 2|E(G)|

and equality holds if and only if all faces of the embedding have the same
degree. From Theorem 9.2.2 we know that

|F (G)| = |E(G)− |V (G)|+ 2.

From these, the corollary follows.
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9.2.4 Lemma. In a planar embedding of a connected graph that is not a
tree, each boundary walk contains the edges of a cycle.

9.2.5 Lemma. There are no planar embeddings of K5 or K3,3.

Proof. Consider K5, which is connected and not a tree. Suppose we have a
planar embedding ofK5. Since each boundary walk contains a cycle, each face
has degree at least three. Applying the corollary above yields the interesting
inequality:

21 = (10− 5 + 2)3 ≤ 20.

We conclude that there is no planar embedding of K5.
Now consider K3,3 which is also connected and not a tree. Since K3,3 is

bipartite each cycle in it has even length, and hence the minimum degree of
a face in a planar embedding would be four. Consequently

20 = (9− 6 + 2)4 ≤ 18.

Therefore K3,3 does not have a planar embedding.

9.3 Vertex and Face Degrees

A triangulation of a surface is an embedding where each face is a triangle.
It is not hard to show that any embedding of a simple graph can be turned
into a triangulation by adding edges in such a way that each faces is divided
into triangles.

9.3.1 Theorem. If G is a connected simple graph on at least three vertices
with a planar embedding, then

|E(G)| ≤ 3|V (G)| − 6;

if equality holds then any planar embedding of G is a triangulation.

Proof. It is easy to check that bound holds (and is not tight) if G is a tree.
If G is not a tree then the boundary walk of each face contains a cycle and
therefore the minimum degree of a face is three. By Corollary 9.2.3 we than
have

3(|E| − |V |+ 2) ≤ 2|E|,
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which is equivalent to

|E| ≤ 3|V | − 6.

From Corollary 9.2.3 we see that equality holds if and only

3|F (G)| =
∑
i

d∗i ,

and this holds if and only if each face has degree three.

9.3.2 Theorem. Every simple planar graph has a vertex with degree at most
five.

Proof. If G has at most six vertices, the result is clearly true. Otherwise by
the previous theorem we have∑

i

di = 2|E| ≤ 6|V | − 12.

It follows that the average degree of a vertex in G is

6− 12

|V |

and therefore the minimum degree of a vertex is at most five.

9.4 Coloring Planar Graphs

It is now well known that every planar graph has a four-colouring, although
no proof is known that does not require us to trust someone’s programming
skills. In this section we prove two weaker results.

9.4.1 Lemma. Every planar graph can be 6-coloured.

Proof. Let G be a planar graph with n vertices. We prove the result by
induction on n. If n ≤ 6 we are done. Otherwise there is a vertex v in G
with degree at most five. By induction, G \ v has a proper 6-coloring. But
this coloring assigns at most five colors to the neighbours of v, and so this
coloring extends to a coloring of G.
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9.4.2 Theorem. Every planar graph can be 5-colored.

Proof. The result holds for all planar graphs with at most five vertices.
Suppose G has n vertices, where n ≥ 6. If G contains a vertex v of degree
at most four, then the argument of the previous lemma yields a proof that
G can be 5-colored.

Suppose v is a vertex in G with degree 5. Since K5 cannot be a subgraph
of a planar graph, there must be two neighbors a and b of v that are not
adjacent. Let H denote the subgraph we get by contracting the edges av
and bv to a single vertex. Since H is obtained by contraction, it has a planar
embedding and therefore by induction on n, it has a proper 5-coloring.

This 5-coloring provides us with a 5-coloring of G \ {a, b, v}, we extend
this to a 5-coloring of G. Color a and b with the color assigned to vertex
in H that represents {a, b, v}. (As a and b are not adjacent, this is proper.)
This gives us a proper 5-coloring of G\v where at most four colors are used
on the neighbors of v; hence there is a fifth color available to use on v.

9.5 Abstract Maps

A matching is a graph such that each component is an edge, and a k-matching
is a matching with exactly k components—so it has k edges and 2k vertices.
Our matchings will usually arise as subgraphs of some larger (and more
interesting) graph. A perfect matching in G is a spanning subgraph which
is a matching. If G has a perfect matching, then |V (G)| is even. A matching
is a regular graph with valency one.

A flag of an embedding is an ordered triple (v, e, f) where v is a vertex, e
is an edge on v and f is a face on e. The number of flags associated with an
embedding of G is 4|E(G)|. We construct the flag graph of the embedding,
which is a cubic graph with its edges partitioned into three perfect matchings.
It is constructed as follows. Its vertices are the flags of G; two flags are
adjacent in the flag graph if they have exactly two elements in common.
We say two flags are 0-related if the adjacent and contain different vertices;
they are 1-related if they are adjacent and contain different edges; if they
are adjacent and contain different vertices they are 2-related. This assigns
an index from {0, 1, 2} to each edge, and the edges with a given index form
a perfect matching of the flag graph.
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Each of our perfect matchings may be viewed as a permutation on the
flags, we denote these permutations by π0, π1 and π2.

9.5.1 Lemma. We have π2
i = 1 and π0π2 = π2π0.

Suppose now that we found three permutations of a set {1, . . . , f} such
that

(a) Each cycle of πi has length two.

(b) If i 6= j then πiπj has no fixed points.

(c) π0π2 = π2π0.

We can construct an embedding from this data as follows. View the three
permutations as matchings on the vertex set {1, . . . , f}. If i 6= j, then the
union of πi and πj is a 2-regular graph and so each component is a cycle.
Construct a graph with the cycles of π1π2 as its vertices and the cycles of
π0π2 as its edges. Note that each cycle of π0π2 has length four.

We orient a face by orienting the edges in it in such a way that the result
directed graph is a directed cycle. If the edge e is common to two faces, we
say that two face-orientations are consistent on e if they orient e in opposite
directions. A map on a surface is orientable if there is an orientation of its
faces such that each pair of adjacent faces are consistent on their common
edge(s).

For example, if we have a map on the sphere, we can orient each face
clockwise and this is clearly an orientation of the map. In general a map is
orientable if and only if its flag graph is bipartite.

9.6 Euler Characteristic

The Euler characteristic of a map with v vertices e edges and f faces is
v − e+ f .

We can define a surface as a set of triangles with vertices labelled by
distinct integers such that:

(a) If ij is an edge of a triangle, it occurs in exactly two triangles.

(b) If we take the triangles that contain the vertex i, the edges that do not
use i form a cycle.
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(c) The graph formed by the vertices and edges of the triangles is connected.

Such a set of triangles determines a map. Two maps lie in the same surface
if and only if

(a) They have the same Euler characteristic.

(b) They are both orientable, or else they are both non-orientable.

The genus of an orientable surface with Euler characteristic k is 1
2
(2−k);

the genus of a non-orientable surface with Euler characteristic k is 2−k. The
plane is the unique surface with Euler characteristic 2.

9.6.1 Lemma. The Euler characteristic of a surface is at most two.

Proof. Suppose we have a 2-cell embedding of a graph G in a surface with
Euler characteristic k. Then the barycentric subdivision of this map is a
triangulation with the same Euler characteristic as the original embedding.
Thus |V |−|E|+|F | = k. Choose a spanning tree of G and contract each edge
in it. This produces a map with one vertex (whose dual is the embedding
of a tree) and with the same Euler characteristic. If there is an edge of
the map in two faces, delete it. By continuing to delete such edges, if they
exist, we produce a map with one vertex and one face and the same Euler
characteristic. But the Euler characteristic of a map with 1 vertex, m edges
and 1 face is 2−m.

If a simple graph G embeds on a surface with Euler characteristic k, then

|V | − |E|+ |F | = k.

If G is not a tree, then any face contains at least three edges, 3|F | ≤ 2|E|
and so

3k = 3|V | − 3|E|+ 3|F | ≤ 3|V | − 3|E|+ 2|E| = 3|V | − |E|

whence
|E| ≤ 3|V | − 3k.

Consequently the average degree of a vertex in G is at most

6− 6k

|V |
.
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9.7 Heawood

We know that a graph with a planar embedding has chromatic number at
most four. It is natural to ask what is the maximum chromatic number of
a graph that can be embedded on a give surface. In 1890, Heawood derived
the following upper bound.

9.7.1 Theorem. If G can be embedded on a surface with Euler characteristic
k and k ≤ 0, then

χ(G) ≤ 1

2
(7 +

√
49− 24k)

Proof. Choose a graph G that embeds in a surface with Euler characteristic
k. Suppose that c = χ(G) and that any proper subgraph of G has chromatic
number less than c. (Otherwise delete some edges of G.) Then the minimum
degree of G is at least c− 1 and so |V (G)| ≥ c.

Using our bound on the average degree d̂, we deduce that

c− 1 ≤ d̂ ≤ 6− 6k

|V |
≤ 6− 6k

c
.

This implies that
c2 − 7c+ 6k ≤ 0

The roots of the quadratic on the left are

1

2
(7±

√
49− 24k),

from which the bound follows.

Note that if we put k = 2 in the bound we have χ(G) ≤ 4! Unfortunately
this is not a proof of the 4-color theorem.

A graph G is minimally n-chromatic if χ(G) = n and for each proper
subgraph H of G we have χ(H) < n. The complete graph Kn is minimally
n-chromatic, otherwise a critically n-chromatic graphs has at least n + 2
vertices (as you are invited to prove). In the previous proof we observed that
a minimally n-chromatic graph has minimum degree at least n− 1.

Brook’s theorem asserts that a graph with chromatic number equal to
the maximum degree of a vertex if either an odd cycle or a complete graph.

9.7.2 Theorem. Supppose k ≤ 0 and n = b(7 +
√

49− 24k)/2c. If k /∈
{−1,−2,−7} and G is embedded on a surface of Euler characteristic k and
G is minimally n-chromatic, then G = Kn.
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Proof. SupposeG has an embedding on a surface of Euler characteristic k and
is minimally n-chromatic. Note that we must have |E(G)| ≤ 3(|V (G)| − k).

If |V (G)| = n + 2 then it can be shown that G is the complement of C5

and a bunch of isolated vertices. Then

|E(G)| =
(
n+ 2

2

)
− 5 > 3(n+ 2− k).

So G has at least n + 3 vertices. Since it is minimally n-chromatic, its
minimum degree is at least n − 1 and by Brooks theorem, it is not regular.
Consequently

|E(G)| > |V (G)|(n− 1)/2

and therefore
|V |(n− 1) + 1 ≤ 6(|V | − k).

Since n ≥ 1, this inequality must hold when |V | = n+ 3, which yields that

n2 + 2n− 2 ≤ 6n+ 18− 6k

and
n2 − 4n+ 6k − 20 ≤ 0.

Hence

n ≤ 1

2
(4 +

√
96− 24k) = 2 +

√
24− 6k.

This inequality fails if k ≤ −20 or −19 ≤ k ≤ 0 and k is not on the list
above??
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Eigenvalues and Eigenvectors

All graphs are simple, again.

10.1 Walks

10.1.1 Theorem. If A is the adjacency matrix of the graph G and u, v are
vertices of G, then (Ar)u,v is equal to the number of walks of length r in G
from u to v.

Proof. The lemma is trivially true when i = 0 (because A0 = I) and true by
definition when r = 1. We proceed by induction on r. Assume r > 1. Then

(Ar+1
u,v ) = (AAr)u,v =

∑
i

Au,i(A
r)i,v.

Since A is a 01-matrix, ∑
i

Au,i(A
r)i,v =

∑
i∼u

(Ar)i,v.

Now the walks inG from u to v can be partitioned according to their
second vertex, which is a neighbour of u. By induction, the number of walks
of length r from i to v is (Ar)i,v and consequently the number of walks of
length r + 1 from u to v is

∑
i∼u(A

r)i,v.

A closed walk is a walk that starts and finishes at the same vertex. The
number of closed walks of length r in G that start and finish at v is (Ar)v,v,
and the number of closed walks of length r in G is therefore equal to tr(Ar).
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Recall that the trace of matrix is equal to the sum of its eigenvalues, and if
the eigenvalues of the n× n matrix A are θ1, . . . , θn, then the eigenvalues of
Ar are

θr1, . . . , θ
r
n.

So if A is the adjacency matrix of G, the number of closed walks of length
in G is equal to the sum of the r-th powers of the eigenvalues of A.

10.1.2 Lemma. Let G be a graph on n vertices and let θ1, . . . , θn be the
eigenvalues of the adjacency matrix of G. Then

(a)
∑n

i=1 θi = 0.

(b)
∑n

i=1 θ
2
i = 2|E(G)|.

Proof.

If all eigenvalues of the symmetric matrix A are zero, then A = 0. So
it follows that if G is a non-empty graph, then it has both positive and
negative eigenvalues. Since 2|E(G)|/n is the average degree of a vertex in
G, we see that the average value of θ2i is equal to the average degree of a
vertex. Therefore if d̂ is the average degree of a vertex in G, then G has an
eigenvalue θ such that

θ ≥
√
d̂.

10.2 Moore Graphs

Let G be a graph with maximum degree k and diameter d. How many
vertices can G have? Suppose u ∈ V (G). The number of vertices at distance
one from u is at most k. The number of vertices at distance two is at most
k(k − 1) and if i ≥ 1 then the number at distance i is at most k(k − 1)i−1.
Therefore if d ≥ 2,

|V (G)| ≤ 1 + k + k(k − 1) + · · ·+ k(k − 1)d−1. (10.2.1)

If G is connected and the bound is tight we call G a Moore graph. If k > 2
then the sum is equal to

1 + k
(k − 1)d − 1

k − 2
.

We will call the bound in (10.2.1) the Moore bound.
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10.2.1 Lemma. If G is a Moore graph with diameter d then G is regular
and its girth is 2d+ 1.

Proof. Let k be the maximum degree of a vertex in G. If the bound in
(10.2.1) is tight, then u has valency k and if 1 ≤ i < d, then each vertex at
distance i from u has one neighbor at distance i − 1 from u and k − 1 at
distance i + 1. So each vertex distance i from u has degree k, and therefore
G is regular.

If the Moore bound is tight, it is tight no matter which vertex in G we
choose as u. So if w is at positive distance from v then w has at most one
neighbour which is closer to v and has a neighbor at the same distance from
v if and only if it is at distance d. Hence the shortest cycle in G has length
2d+ 1.

W consider some examples. An odd cycle is a Moore graph. A complete
graph is a Moore graph of diameter 1. The Petersen graph is a Moore graph
with diameter two. (The easiest way for you to verify this is to show that
Moore bound is tight.) A Moore graph with dimaeter two and degree k has
exactly k2 + 1 vertices.

10.3 Moore Graphs with Diameter Two

The cycle C5 and Petersen graph are two Moore graphs with diameter two.
We show that there are at most two more Moore graphs.

We use J to denote a matrix with all entries equal to 1. If G is the
complement of G and A = A(G) is its adjacency matrix, then

A(G) = J − I − A.

10.3.1 Lemma. Suppose G is a Moore graph with diameter two and valency
k and let A be its adjacency matrix. Then AJ = JA = kJ and

A2 + A− (k − 1)I = J.

Proof. SinceG is k-regular, each row and column of A sums to k and therefore
AJ = JA = kJ .

If u, v ∈ V (G), then (A2)u,v is the number of walks length two from u
to v. If u = v, there are k walks of length two that start and end on u—
corresponding to the k edges on u. If u ∼ v, then the number of walks of
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length two from u to v is equal to the number of triangles on the edge uv,
which is zero. If v is not equal or adjacent to u then it is is at distance two
from v and there is a unique walk of length two from u to v. Thus

(A2)u,v =


k, u = v;

0, u ∼ v

1, otherwise.

Accordingly
A2 = kI + A(G) = kI + J − I − A,

which yields the result.

We can use Lemma 10.3.1 to determine the eigenvalues of A. Since AJ =
kJ , each column of J is an eigenvector for A with eigenvalue k. Suppose z
is an eigenvector for A and z is orthogonal to 1. If Az = θz, then

0 = Jz = (A2 + A− (k − 1)I)z = θ2z + θz − (k − 1)z = (θ2 + θ − (k − 1))z

and therefore θ is a zero of

t2 + t− (k − 1).

Since A is symmetric there is an orthogonal basis for Rn that consists of
eigenvectors for A, and we may one vector in this basis to be 1. Hence we
have proved:

10.3.2 Lemma. If G is a Moore graph with diameter two and valency k and
θ is an eigenvalue of G, then either θ = k or it is a zero of the quadratic

t2 + t− (k − 1).

10.4 Multiplicities

We determine the multiplicities of the eigenvalues of a Moore graph with
diameter two. The zeros of t2 + t− k + 1 are

1

2
(−1±

√
4k − 3).

We denote the positive zero by θ and the negative zero by τ . It is easy to
verify that neither θ nor τ is equal to k.
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Suppose that z1, . . . , zn is an orthogonal basis of eigenvectors of A and
z1 = 1. If i 6= 1 then zi is orthogonal to 1 and so from the previous section
we see that the eigenvalue belonging to zi is θ or τ . Thus k is an eigenvalue
for A with multiplicity 1.

Denote the multiplicities of θ and τ by mθ and mτ respectively. Then

1 +mθ +mτ = n

and since tr(A) = 0,
k + θmθ + τmτ = 0.

So we have two linear equations with mθ and mτ as unknowns. Solving them,
we find that

mτ =
(n− 1)θ + k

θ − τ
, mθ =

(n− 1)τ + k

τ − θ
.

10.4.1 Lemma. Suppose G is a Moore graph with diameter two and valency
k. If 4k − 3 is not a perfect square, then k = 0 (and G = K1) or k = 2 (and
G = C5).

Proof. Note that
θ − τ =

√
4k − 3.

From the formulas above,

mτ −mθ =
(n− 1)(θ + τ) + 2k

θ − τ
and since θ + τ = −1, we have

(mθ −mτ )(θ − τ) = n− 1− 2k = k2 − 2k.

If 4k − 3 is not a perfect square, then θ − τ is irrational and this equation
implies that mθ = mτ and k2 − 2k = 0.

If k = 3 then 4k − 3 = 9, which is a perfect square.

10.4.2 Lemma. Suppose G is a Moore graph with diameter two and valency
k. If 4k − 3 is a perfect square, then θ and τ are integers.

Proof. We note that 4k − 3 is odd, and so 4k − 3 is the square of an odd
integer, 2s+ 1 say. So the eigenvalues θ and τ are

1

2
(−1± (2s+ 1))

that is, they are s and −s− 1.
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10.5 The Main Result

10.5.1 Theorem. If G is a Moore graph of diameter two and degree k, then
k ∈ {2, 3, 7, 57}.

Proof. If 4k − 3 is not a square then k = 2, as we have seen. We assume
4k − 3 is a square, and hence we have

4k − 3 = (2s+ 1)2

for some s and so k = s2 + s + 1. As we saw at the end of the last section,
θ = s and τ = −s− 1. Hence we have the following expression for mτ :

mτ =
(n− 1)s+ k

2s+ 1
=
k2s+ k

2s+ 1
=

(s2 + s+ 1)(s2 + 1)(s+ 1)

2s+ 1

The remainder when we divide (s2 + s+ 1)(s2 + 1)(s+ 1) by 2s+ 1 is 15
32

. So
if we set r = 2s we find that

32mτ =
(4s2 + 4s+ 4)(4s2 + 4)(2s+ 2)

2s+ 1
=

(r2 + 2r + 4)(r2 + 4)(r + 2)

r + 1

The remainder of (r2 + 2r+ 4)(r2 + 4)(r+ 2) on division by r+ 1 is 15, hence
r + 1 = 2s+ 1 must divide 15. Since the divisors of 15 are

{1, 3, 5, 15}

we conclude that
k ∈ {1, 3, 7, 57}.

Hence the theorem is proved.

10.6 The Hoffman-Singleton Graph

The Moore graph of diameter two and valency seven is called the Hoffman-
Singleton graph after its discoverers. We give a description of it. We first
construct a bipartite graph on 50 vertices with degree 5.

The vertices of our bipartite graph will consist of the points and some
of the lines in the vector space of dimension two over Z5. We represent the
points by ordered pairs (x, y). A line consists of the five points (x, y) such

96



CHAPTER 10. EIGENVALUES AND EIGENVECTORS

that y = ax+ b for given a and b; we denote this line by [a, b]. Thus we have
25 points and 25 lines. (We do not use the five lines parallel to the y-axis.)
We declare (x, y) and [a, b] to be adjacent if (x, y) is on [a, b]. Thus we have a
5-regular bipartite graph on 50 vertices. We will transform it into a 7-regular
graph by adding 10 copies of C5.

We claim that this graph has girth at least six and diameter four.
We can divide the 25 points into five classes, according to their x-coordinate.

We divide the lines into five classes according to their slope a.
We claim that two distinct vertices u and v are in the same class if and

only if dist(u, v) = 4.
Now we add 5-cycles: join (x, i) to (x, i± 1), join [a, j] to [a, j ± 2].
If A is a point class and B is a line class, the subgraph induced by A∪B

is isomorphic to the Petersen graph.

10.7 Strongly Regular Graphs

A graph G is strongly regular if it is regular but not complete or empty, and
there are constants a and c such that

(a) If x and y are adjacent in G, they have exactly a common neighbors.

(b) If x and y are distinct and not adjacent, they have exactly c common
neighbors.

If G has v vertices and is k-regular, we say that it is a (v, k; a, c) strongly
regular graph. If G is strongly regular, the number of walks of length two be-
tween vertices u and v is determined by whether u and v are equal, adjacent,
or distinct and not adjacent.

If m,n > 1, then mKn is strongly regular. A Moore graph of diameter
two is strongly regular with parameters (k2 + 1, k; 0, 1). The complement of
a strongly regular graph is strongly regular.

10.7.1 Theorem. Let G be a graph with adjacency matrix A. Then G is
strongly regular if and only if there are integers k, a and c such that

A2 − (a− c)A− (k − c)I = cJ.

Proof. Let A denote the adjacency matrix of G. Then A = J − I −A and G
is strongly regular if and only if there are integers k, a and c such that

A2 = kI + aA+ cA.
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This is equivalent to the equation in the statement of the theorem.

If G has v vertices and A2 = kI+aA+cA, then since the diagonal entries
of A2 are the row sums of A, we see that G is k-regular. Hence

cv1 = cJ1 = (A2 − (a− c)A− (k − c)I)1 = (k2 − (a− c)k − (k − c))1.

It follows that v is determined by k, a and c.
We can use the matrix equation in the above theorem to determine the

eigenvalues of a strongly regular graph and their multiplicities, just as we did
for Moore graphs.

Examples: Clebsch, L(Kn).

10.8 Paley Graphs

Let F be a finite field of odd order and let F∗ denote the non-zero elements
of F. Let S denote the set of non-zero squares in F and let N be the set of
non-squares. Thus S and N partition F∗. The set S is the image of the map
σ : F→ F given by σ(x) = x2. Since F has odd order, if c ∈ F∗ then −c 6= c
so σ maps two elements of F∗ to each element of S. Consequently

|N | = |S| = q − 1

2
.

If b ∈ F∗ and bx2 = y2, then b is the square of y/x. Therefore if b ∈ N ,

bS ∩ S = ∅

and so bS = N . Hence
S = b2S = bN.

Thus the product of a two non-squares is a square and the product of a
square and a non-square is a non-square.

Suppose now that −1 ∈ S. (We will see that this implies that q ≡ 1
modulo 4.) The Paley graph has F as its vertex set, and elements a and b
of F are adjacent if a − b ∈ S. Note that since −1 ∈ S, if a − b ∈ S then
b− a ∈ S.

If −1 /∈ S then
(a− b)(b− a) = −(a− b)2

is not a square and so either a− b ∈ S or b−a ∈ S, but not both. The Paley
tournament is the directed graph with vertex set F, where (a, b) is an arc if
b− a ∈ S.
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10.8.1 Lemma. If F is a field of odd order q, then −1 is a square if and only
if q ≡ 1 modulo 4.

Proof. Suppose −1 is not a square and let G be the Paley tournament with
vertex set F. If a ∈ S, let τa be the map from F to itself given by τa(x) := ax.
If a is a square then τa is an automorphism of G that fixes 0 and maps S to
S and N to N . Moreover if x and y are squares and a = y/x, then τa fixes
S and maps x to y.

Hence the tournament induced by the vertices of S is vertex transitive
and so its vertices all have the same in-degree and the same out-degree. Since
both the in-degrees and the out-degrees sum to the number of arcs, it follows
that the in-degree and out-degree of each vertex are the same. Since exactly
one of the pairs (x, y) and (y, x) is an arc, it follows that |S| is odd and
therefore

q = 2|S|+ 1 ≡ 3 mod 4.

Now assume −1 is a square and let G be the Paley graph with vertex set
F. Suppose that x in S has exactly r neighbors in N . Using the maps τa, we
can show that each vertex in S has exactly r neighbors in N .

Assume b ∈ N . If x ∈ S and y ∈ N and y−x ∈ S, then by−bx ∈ N . Now
by ∈ S and bx ∈ N and x is adjacent to y if and only if by is not adjacent
to bx. So bx is not adjacent to r vertices in N and therefore it is adjacent to
|N | − r vertices. Accordingly

r = |N | − r,

which implies that N is even and that q ≡ 1 modulo 4.

If we use the result that F∗ is a cyclic group, it is easy to provide another
proof of this result. When q is prime, you may use Fermat’s little theorem
to the same end.

The proof of the previous lemma also yields that if q ≡ 1 modulo 4, then
each vertex in S has exactly r = (q − 1)/4 neighbors in N . Hence the Paley
graph on q vertices is strongly regular, with parameters(

q,
q − 1

2
;
q − 5

4
,
q − 1

4

)
.

If A is the adjacency matrix, then

A2 + A =
q − 1

4
(J + I).
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If A is the adjacency matrix of the Paley tournament on q vertices (so Ax,y =
1 if and only if y − x is a square), then you may show that

A2 + A =
q + 1

4
(J − I)

and, for later use, that

(2A− J)(2AT − J) = (q + 1)I − J. (10.8.1)

10.9 Independent Sets

Recall that a subset S is V (G) is independent if it induces a subgraph with
no edges. The maximum size of an independent set is G is denoted by α(G).

Suppose S ⊆ V (G). We call the vector x the characteristic vector of S if
x is a 01-vector and xi = 1 if and only if i ∈ S.

10.9.1 Lemma. If x is the characteristic vector of a subset S of the graph
G and A is the adjacency matrix of G, then S is independent if and only if
xTAx = 0.

Proof. We have
xTAx =

∑
xiAi,jxj =

∑
ij∈E(G)

xixj.

10.9.2 Lemma. Suppose A is the adjacency matrix of the k-regular graph
G on v vertices. If τ is the least eigenvalue of A, then the matrix

A− τI − k − τ
v

J

is positive semidefinite.

Proof. A matrix is positive semidefinite if and only if its eigenvalues are
non-negative. We check that

(A− τI − k − τ
v

J)1 = (k − τ)1− k − τ
v

v1 = 0.

Thus 0 is an eigenvalue of A− τI − k−τ
v
J with 1 as an eigenvector. Suppose

now that z is an eigenvector for A that is orthogonal to 1 and has eigenvalue
θ. Then

(A− τI − k − τ
v

J)z = (A− τI)z = (θ − τ)z.

Since τ is the least eigenvalue of A, we see that θ − τ ≥ 0. Therefore
A− τI − k−τ

v
J is positive semidefinite.
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10.9.3 Theorem. Let G be a k-regular graph with least eigenvalue τ . Then

α(G) ≤ v

1− k
τ

.

Proof. ‘Recall’ that a matrix M is positive semidefinite if and only if it is
symmetric and xTMx ≥ 0 for all x. So

0 ≤ xT
(
A− τI − k − τ

v
J

)
x = xTAx− τxTx− k − τ

v
xTJx.

If x is the characteristic vector of the independent set S, then

xTAx = 0, xTx = |S|, xTJx = |S|2

and therefore

0 ≤ −τ |S| − k − τ
v
|S|2,

from which the theorem follows.

10.9.4 Corollary. If the bound in theorem is tight and x is the characteristic
vector of an independent set S with maximum size, then x − |S|

v
1 is an

eigenvector for A with eigenvalue τ .

Proof. If the bound is tight, then

0 = xT
(
A− τI − k − τ

v
J
)
x

and from this it follows that(
A− τI − k − τ

v
J
)
x = 0.

(This holds because the matrix is positive semidefinite.) From this point it
is a routine exercise to verify the claim.

Consider a Moore graph G of diameter two and valency k = s2 + s + 1.
Then

v = (s2 + s+ 1)2 + 1

= s4 + 2s3 + 2s2 + s2 + 2s+ 2

= (s2 + 1)(s2 + 2s+ 2)
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and

1 +
k

τ
= 1 +

s2 + s+ 1

s+ 1
=
s2 + 2s+ 2

s+ 1
.

Therefore
α(G) ≤ (s2 + 1)(s+ 1).

For k = 2, 3 and 57, the respective bounds on α(G) are 4, 15 and 400. The
first two bounds are tight.

10.10 Eigenvectors

Let A be the adjacency matrix of the graph G. Assume n = |V (G)| and let
e1, . . . , en denote the standard basis for Rn. Then since A is a 01-matrix, if
f ∈ Rn, then

(Af)i =
n∑
j=1

Ai,jfj =
∑
j∼i

fj.

This can be expressed another way. Suppose f is a function on the vertices
of G. There is a linear transformation S (on the space of functions on V (G))
defined by

(Sf)(i) :=
∑
i∼j

f(j);

the adjacency matrix is the matrix that represents S relative to the standard
basis.

A function f is an eigenvector for S (or A) if it is not zero and there is a
scalar θ such that Tf = θF , or equivalently if

θf(i) =
∑
j∼i

f(j).

For example, if G is k-regular then any non-zero constant function is an eigen-
vector, with eigenvalue k. If G is k-regular and bipartite then the function
taking value 1 on white vertices and −1 on black vertices is an eigenvector
with eigenvalue −k. Since A is symmetric this eigenvector is orthogonal to
any non-zero constant function and so we conclude that in a regular bipartite
graph, there are an equal number of vertices of each color. (There are other
proofs of this.)

We determine eigenvectors and eigenvalues for the complete graphs. Since
Kn is regular, a non-zero constant function is an eigenvector with eigenvalue
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n− 1. Suppose f is a non-zero function on V (Kn) whose values sum to zero.
Then

(Af)i =
∑
j 6=i

fj = −fi +
n∑
j=1

fj = −fi.

Note that the values of f sum to zero if and only if f is orthogonal to the
constant functions. The constant functions span a space with dimension 1,
and so its orthogonal complement has dimension n − 1. It follows that −1
is an eigenvalue of A with dimension n− 1. Hence the eigenvalues of Kn are
n− 1 (with multiplicity 1) and −1 (with multiplicity n− 1).
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Chapter 11

Matchings

All graphs are simple, still.

11.1 Matchings

A matching in a graph is a set of edges, no two with a vertex in common. (So
a matching is not a graph.) The size of a matching is the number of edges
in it, and a k-matching is a matching of size k. Our basic problem is the
following: we are given a graph and we want to find a matching in it with as
many edges as possible. The maximum number of edges in a matching from
G is often denoted by ν(G). We often say that a vertex of G in a matching
M is covered by M . A k-matching covers 2k vertices and so 2ν(G) ≤ |V (G)|.
A matching is perfect if it covers every vertex. Clearly a graph with a perfect
matching must have an even number of vertices.

11.1.1 Lemma. If M is matching in G that is not contained in a matching
with more edges, then the vertices not covered by M form an independent
set.

Proof. Suppose M is as stated and let S be the set of vertices of G not
covered by M . If e is an edge of G that joins two vertices of S, then M ∪ e
is a matching that contains G and is larger. We conclude that S is an
independent set.

The matching M in this lemma is maximal under inclusion. Gener-
ally we are only interested in finding matchings that have as many edges as
possible.
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We can establish a lower bound on ν(G) by finding a matching with as
many edges as possible. Somewhat surprisingly, there is a good way to get
an upper bound. A subset C of V (G) is a vertex cover if every edge of G
contains at least one vertex of C. As a somwhat trivial example, if G is
bipartite, then the vertices in a color class form a vertex cover.

11.1.2 Lemma. If C is a vertex cover in G and M is a matching, then
|M | ≤ |C|.
Proof. Suppose M is a matching and C is a vertex cover in G. Then each
edge in M must contain a vertex in C; since the edges of M disjoint it follows
that there is at least one vertex in C for each edge of M , and consequently
|M | ≤ |C|.

For an odd cycle C2k+1, we have ν(G) = k while any vertex cover must
have at least k + 1 vertices in it. We will see that if G is bipartite, there is
always a vertex cover C such that |C| = ν(G).

11.2 Augmenting Paths

Let M be a matching in G. A path P in G is an alternating path relative to
M if E(P )\M is a matching; thus P is alternating if every other edge is in
M . Similarly a cycle C is alternating if E(C)\M is a matching. (Hence an
alternating cycle has even length.)

If M and N are sets, then M ⊕N denotes their symmetric difference.

11.2.1 Lemma. If M and N are matchings in G, then the components (of
the subgraph formed by) M ⊕N are even cycles and paths; each component
is alternating relative to either matching.

Proof. The graph formed by the edges in M ⊕ N has maximum degree
two, and therefore its components are cycles and paths. If H is one of the
components of this graph, then E(H) \M is a matching, and so H is an
alternating cycle or path.

An augmenting path relative to a matching M is an alternating path
whose first and last vertices are not covered by M . So if P is an augmenting
path, then

|E(P )\M | > |E(P ) ∩M |.
11.2.2 Lemma. If M is a matching in G and P is an augmenting path
relative to M , then M ⊕E(P ) is a matching with one more edge than M .
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11.2.3 Theorem. A matching M in G has maximum size if and only if there
is no augmenting path relative to M .

Proof. Clearly if M has an augmenting path, it is not maximal. Assume
conversely that M no augmenting path.

Let N be a second matching in G and consider the subgraph formed by
the edges in M ⊕ N . If H is a component of this graph and H contains
more edges from N than M , then H cannot be an even cycle and so it is an
alternating path with neither end covered by M—thus it is an augmenting
path relative to M . Therefore each component of M ⊕N contains as many
edges from M as from N , and consequently |M | ≥ |N |. This implies that M
has maximal size.

11.3 A Royal Theorem

If S is a subset of the vertices of G, then N(X) denotes the set of vertices of
G which are adjacent to a vertex in S. The following result is due to König.

11.3.1 Theorem. If G is a bipartite graph and M is a matching with max-
imum size, there is a vertex cover C such that |M | = |C|.

Proof. Let A and B be the two colour classes of G and let M be a matching
in G. We construct a vertex cover.

Let X0 denote the vertices in A not covered by M . Let X denote the set
of vertices in A that are joined to a vertex in X0 by an alternating path. Let
Y denote the vertices in B joined to a vertex in X0 by an alternating path.
Let Y0 be the set of vertices in Y not covered by M .

We claim that
C := (A\X) ∪ Y

is a vertex cover. Clearly (A\X)∪X is a vertex cover, so to prove the claim
we show that each edge that contains a vertex in X must contain a vertex in
Y . Equivalently, we must show that if u ∈ X, then N(u) ⊆ Y . Let P be an
alternating path joining a vertex in X0 to u in X. Note that the edge of P
on u lies in M . If b is a neighbour of u, then b ∈ B. If ub ∈M , then ub is the
last edge of P and therefore b is joined by an alternating path to a vertex in
X, and therefore b ∈ Y . If ub /∈M , then P extended by ub is an alternating
path from a vertex in X0 to b, and therefore b ∈ Y . Thus N(u) ⊆ Y and
therefore (A\X) ∪ Y is a vertex cover.
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Now we claim that

|M | = |A\X|+ |Y \Y0|.

Let D denote the set (A\X)∪ (Y \Y0). Since C is a vertex cover, each edge
of M contains a vertex in A\X or a vertex in Y . Any vertex of Y that lies
on an edge of M must be in Y \Y0, and therefore the vertices in D cover the
edges in M . So our claim will follow if no edge in M joins two vertices in
D. But no edge joins two vertices in A \X or two in Y \ Y0, and since an
alternating path from a vertex in X0 to a vertex in B ends with an edge not
in M , any vertex paired by M with a vertex in Y lies in X. So each matching
edge contains exactly one vertex from D, and thus our claim holds.

Consequently we have

|M | = |A\X|+ |Y \Y0| = |C| − |Y0|.

If Y0 6= ∅ and y ∈ Y0, then there is an alternating path from a vertex in X0 to
y. Neither end of this path is covered by M and so it is an augmenting path.
This implies that M does not have maximum size. Therefore if M does have
maximum size, then Y0 = ∅ and |C| = |M |.

If M does not have maximum size, the above proof provides an augment-
ing path for M ; if M does have maximum size it provides a vertex cover C
of the same size as M . In fact it yields an algorithm for finding a maximum
matching in a bipartite graph.

11.4 Hall’s Theorem

Suppose G is a bipartite graph with bipartition (A,B). If D ⊆ A and
|N(D)| < |D|, there is no matching of G that covers A. Surprisingly the
converse is true; this is Hall’s theorem:

11.4.1 Theorem. Suppose G is a bipartite graph with bipartition (A,B).
There is a matching of G that covers A if and only if for each subset X of A
we have |N(X)| ≥ |X|.

Proof. We derive this from König’s theorem. Let M be a matching of
maximum size and let C be a vertex cover such that |C| = |M |.
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We assume M does not cover A, and prove that |N(A \C)| < |A \C|.
Since C is a cover, no edge joins a vertex in A\C to a vertex in B \C, and
therefore N(A\C) ⊆ B ∩ C. As B ∩ C = C \A and |C| < |A|,

|N(A\C)| ≤ |B ∩ C| = |C \A| = |C| − |A ∩ C| < |A| − |A ∩ C| = |A\C|.

Conversely, if M covers A and C ′ ⊆ A then N(C ′) contains the vertices
that are paired with vertices in C ′ by M ; hence N(C ′) ≥ |C ′|.

If M is a matching of maximum size and X and Y are sets used in our
proof of König’s theorem, then N(X) ⊆ Y . Since M is maximum, it covers
each vertex in Y and, as we saw in the proof, the vertices paired with vertices
in Y by M all belong to X. Since X contains the vertices in A not covered by
M , it follows that |X| > |Y |. This provides another proof of Hall’s theorem.

We offer a third proof of Hall’s theorem. Assume G is bipartite with
bipartition (A,B). Assume that if C ′ ⊆ A, then |N(C ′)| ≥ |D|. If |N(D)| >
|D| for each proper subset D of A and e ∈ E(G), then Hall’s condition holds
in G\ e and so G\ e has a matching that covers A. So we assume there is a
proper subset D0 of A such that |N(D0)| = |D0|.

If D ⊆ A and D0 ⊆ D, then N(D) contains N(D0) and so each vertex in
N(D)\N(D0) is a neighbor of a vertex in D \D0. Since

|N(D)| ≥ |D|, |N(D0)| = |D0|

it follows that |N(D\D0)| ≥ |D\D0|. It follows that by induction that there
is a matching in G that covers D0 and a matching that covers A \D0 but
not any vertices in D0. The union of these two matchings is a matching that
covers A.
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d-regular, 69
k-colorable, 78
k-matching, 105
k-subset, 8
n-cube, 69
n-th Catalan number, 14
q-binomial coefficient, 51
q-derivative, 54
q-exponential series, 56
q-factorial, 51
2-distinct, 64

permutation, 7

adjacency matrix, 76
adjacent, 69
alternating path, 106
augmenting path, 106
automorphism, 76
automorphism group, 76

binomial coefficient, 8
binomial series, 17
bipartite, 78
block decomposition, 35

Cartesian product, 12
chromatic number, 78
circulant with connection set C, 69
coloring, 78
complement, 69

complete graph, 69
component, 72
composition, 23
compositional inverse, 23
concatenation, 29
conjugate, 49
connected, 71
covered, 105
cubic, 69
cycle, 71, 75

degree, 69
deleting, 72
derivative, 23
directed graph, 71, 74
distance, 71
Durfee square, 59

empty graph, 69
end-vertices, 71
Euler’s pentagonal number theorem,

50
exponential series, 22

factorial, 7
Ferrer’s diagram, 48
forest, 73
formal language, 29

generating series, 15, 30
graph, 69
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head, 74

in-degree, 75
independent, 78
induced subgraph, 71
inverse, 20
isomorphism, 75

Kleene closure, 30

lattice paths, 13
Laurent series, 19
linear recurrence, 36
logarithmic series, 23
loop, 72, 75

matching, 105
multivariate generating series, 43

neighborhood, 77
neighbour, 69
neighbourhood, 69

order, 20
out-degree, 75

partition, 45
path, 71, 75
pentagonal number, 49
perfect, 105
planted, 43
power series, 19
prefix, 39

regular, 69

separated, 9
set of quotients, 40
spanning subgraph, 71
spanning tree, 73
strong component, 75

strongly connected, 75
suffix, 40
sum, 25
summable, 21

tail, 75
tree, 73

underlying graph, 75

valency, 69
vertex cover, 106

walk of length k, 71
weak component, 75
weakly connected, 75
weight function, 30
word, 29
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