Math 249 Assignment 3

Due: Wednesday, February 2

- 1. Let *S* be the set of all subsets of $\{0, ..., n-1\}$ and define the weight of a subset to be the sum of its elements. Let *T* be the subset of *S* consisting of the subsets that do not contain n-1. Let $\Phi_S(x)$ and $\Phi_T(x)$ be the generating series for *S* and *T* respectively.
 - (a) (3 points) Compute $\Phi_S(x)$ when n = 4.
 - (b) (4 points) Prove that $\Phi_S(x) = (1 + x^{n-1})\Phi_T(x)$.
 - (c) (2 points) Give an expression for $\Phi_S(x)$ as a product of *n* polynomials.
- 2. Let A(x) and B(x) be series with constant terms equal to 1 such that $B(x) = A(x)^2$. Note that if C(x) is the series $\sum_{n\geq 0} c_n x^n$, then its derivative C'(X) is $\sum_{n\geq 0} (n+1)c_{n+1}x^n$.
 - (a) (2 points) Using the usual rules from Calculus, show that A(x)B'(x) = 2A'(x)B(x).
 - (b) (2 points) Assuming that $a_k = \langle x^k, A(x) \rangle$ and $b_k = \langle x^k, B(x) \rangle$, compute formulas for the coefficient of x^n in A(x)B'(x) and in A'(x)B(x).
 - (c) (5 points) Apply the previous material with $B(x) = (1 x)^{-1}$ to compute the first five coefficients of $(1 x)^{-1/2}$.
- 3. We say that two words α and β in $(a + b)^*$ are *conjugate* if there are words γ_1 and γ_2 such that

$$\alpha = \gamma_1 \gamma_2, \quad \beta = \gamma_2 \gamma_1.$$

Equivalently β is conjugate to α if it is a cyclic shift of α . Let *L* denote the set of words α in $(a+b)^*$ such that the number of *a*'s is one plus the number of *b*'s and, in any prefix of α , the number of *a*'s greater than the number of *b*'s.

- (a) Prove that if α and β are conjugate words in *L*, then $\alpha = \beta$.
- (b) Prove that if α has length *n*, then it has *n* distinct conjugates.
- (c) Show that if β is a word over $\{a, b\}$ that contains n + 1 *a*'s and *n b*'s, then β is conjugate to a unique word in *L*.
- (d) Determine the number of words in *L* with length 2n + 1.
- (e) Determine the number of Catalan paths.