Math 249 Assignment 1

Due: Wednesday, January 19

1. (5 points) Use induction on *n* and the recurrence

$$
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}
$$

to prove the binomial theorem:

$$
(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.
$$

Solution: Assume that

$$
(1+x)^{n-1} = \sum_{k=0}^{n} {n-1 \choose k} x^k.
$$

Then

$$
(1+x)^n = (1+x) \sum_{k=0}^n {n-1 \choose k} x^k
$$

=
$$
\sum_{k=0}^{n-1} {n-1 \choose k} x^k + \sum_{k=0}^{n-1} {n-1 \choose k} x^{k+1}
$$

=
$$
\sum_{k=0}^{n-1} {n-1 \choose k} x^k + \sum_{k=1}^n {n-1 \choose k-1} x^k
$$

=
$$
1 + \sum_{k=1}^{n-1} {n-1 \choose k} + {n-1 \choose k-1} x^k + x^n
$$

=
$$
1 + \sum_{k=1}^{n-1} {n \choose k} + x^n,
$$

where we used our recurrence in the last line. Since $\binom{n}{0}$ $\binom{n}{0}$ = 1 and $\binom{n}{n}$ $\binom{n}{n}$ = 1, the result follows at once.

- 2. The sets S_1 ,..., S_m form a partition of *S* if their union is *S* and $S_i \cap S_j = \emptyset$ when $i \neq j$.
	- (a) (3 points) If $n = 2m$, prove that the number of partitions of $\{1, ..., n\}$ with two parts of $\sin^2(m) \sin^2(\frac{2m-1}{m-1})$ $\binom{2m-1}{m-1}$.
	- (b) (3 points) If $n = 2m$, prove that the number of partitions of $\{1, ..., n\}$ with all parts of size two is

$$
\frac{(2m)!}{2^m m!} = (2m-1)(2m-3)\cdots 1.
$$

Solution:

(a) Suppose π is a partition of $\{1,\ldots,n\}$ with two parts of size *m*. Note that if we know the *m*−1 elements other than *n* in the part of *π* that contains *n*, then we can write down both parts of π . In other words we have a bijection from the set of partitions of $\{1,\ldots,n\}$ with with two parts of size *m* to the set of subsets of $\{1,\ldots,2m-1\}$ with size $m-1$. So the number of partitions is $\binom{2m-1}{m-1}$ $_{m-1}^{2m-1}$).

(b) We prove the result by induction on *m*. It is clearly true if $m = 1$. Assume $m > 1$ and assume inductively that the result holds for $m-1$. Suppose π is a partition of $\{1,\ldots,2m\}$ and suppose that in π the element 2*m* is paired with *j*. If we delete the pair $\{j, 2m\}$ from π , what is left over is a partition of the set

$$
\{1,\ldots,2m-1\}\setminus\{j\}
$$

into *m* − 1 pairs. By induction we find that the number of partitions of {1,..., 2*m*} into pairs where 2*m* is paired with *j* is equal to

$$
(2(m-1)-1)(2(m-2)-1)\cdots 1 = (2m-3)(2m-5)\cdots 1
$$

Since this does not depend on *j* and since we have $2m - 1$ possible values for *j*, we conclude that the number of partitions of {1,..., 2*m*} into pairs is as stated.

3. (5 points) Construct a bijection between the even and odd subsets of $\{1, \ldots, n\}$, and hence deduce that if $n > 1$,

$$
\sum_{k\geq 0} \binom{n}{2k} = \sum_{k\geq 0} \binom{n}{2k+1}.
$$

(Here we take the view that $\binom{n}{e}$ $\binom{n}{\ell} = 0$ if $n < \ell$.)

Solution: Let $\mathcal O$ denote the set of odd subsets of $\{1,\ldots,n\}$. We define a function f on $\mathcal O$ as follows. If $\alpha \in \mathcal{O}$ and $1 \in \alpha$, then

 $f(\alpha) = \alpha \setminus \{1\}$

and if $1 \notin \alpha$ then

 $f(\alpha) = \alpha \cup \{1\}.$

If $\mathcal E$ is the set of even subsets of $\{1,\ldots,n\}$, then f is defined on each element of $\mathcal O$ and it maps $\mathcal O$ to $\mathcal E$. We must show that f is a bijection.

Suppose *α* and *β* are distinct odd subsets. If $1 \in \alpha$ and $1 \notin \beta$ then $f(\alpha) \neq f(\beta)$ and similarly if $1 \notin \alpha$ and $1 \in \beta$ the $f(\alpha) \neq f(\beta)$. If 1 lies in both α and β then since $\alpha \neq \beta$ we have

$$
f(\alpha) = \alpha \setminus \{1\} \neq \beta \setminus \{1\} = f(\beta).
$$

If neither α nor β contains 1, then $\alpha \cup 1 \neq \beta \cup 1$. We conclude that f is injective. We now show *f* is surjective. If γ is an even subset and $1 \notin \gamma$ then $\gamma = f(\gamma \cup 1)$; if $1 \in \gamma$ then $\gamma = f(\gamma \setminus 1)$. Hence *f* is surjective and therefore it is a bijection.

4. (4 points) Prove the identity in the last question by applying the binomial theorem and noting that $(1-1)^n = 0$ (when *n* > 0).

> $(1-x)^n = \sum_{n=1}^n$ $\overline{k=0}$ Ã *n k* ! (−*x*) *k* $=$ \sum $\bar{\ell}=0$ Ã *n* 2ℓ ! $(-x)^{2\ell} + \sum$ $\bar{\ell}=0$ Ã *n* $2\ell + 1$! $(-x)^{2\ell+1}$ $=$ \sum $\ell=0$ Ã *n* 2ℓ ! $x^{2\ell}$ − \sum $\ell=0$ Ã *n* $2\ell + 1$! $x^{2\ell+1}$

If we set $x = 1$ in this, our identity follows.

Solution: We have

5. (5 points) Let sur(*n*,*k*) denote the number of functions from an *n*-element set to a *k*-element set that are surjections. Prove that

$$
m^n = \sum_{k=1}^m \binom{m}{k} \operatorname{sur}(n,k).
$$

Solution: We note that m^n is the number of functions from an n element set (say N) to an *m*-element set (say *M*). The range of such a function is a non-empty subset of *M*. If *M*₁ ⊆ *M* and $|M_1| = k$, the number of functions whose range is *M*₁ is equal to sur(*n*, *k*). Since M has $\binom{m}{k}$ such sets of size k , the number of functions whose range has size k is

$$
\binom{m}{k} \text{sur}(n,k)
$$

and therefore

$$
m^n = \sum_{k=1}^m \binom{m}{k} \operatorname{sur}(n,k).
$$