Math 249 Assignment 1

Due: Wednesday, January 19

1. (5 points) Use induction on *n* and the recurrence

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

to prove the binomial theorem:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

Solution: Assume that

$$(1+x)^{n-1} = \sum_{k=0}^{n} \binom{n-1}{k} x^{k}$$

Then

$$(1+x)^{n} = (1+x)\sum_{k=0}^{n} \binom{n-1}{k} x^{k}$$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k} + \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k+1}$$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k} + \sum_{k=1}^{n} \binom{n-1}{k-1} x^{k}$$

$$= 1 + \sum_{k=1}^{n-1} \binom{n-1}{k} + \binom{n-1}{k-1} x^{k} + x^{n}$$

$$= 1 + \sum_{k=1}^{n-1} \binom{n}{k} + x^{n},$$

where we used our recurrence in the last line. Since $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$, the result follows at once.

- 2. The sets S_1, \ldots, S_m form a *partition* of *S* if their union is *S* and $S_i \cap S_j = \emptyset$ when $i \neq j$.
 - (a) (3 points) If n = 2m, prove that the number of partitions of $\{1, ..., n\}$ with two parts of size m is $\binom{2m-1}{m-1}$.
 - (b) (3 points) If n = 2m, prove that the number of partitions of {1,..., n} with all parts of size two is

$$\frac{(2m)!}{2^m m!} = (2m-1)(2m-3)\cdots 1.$$

Assignment 1

Solution:

(a) Suppose π is a partition of $\{1, ..., n\}$ with two parts of size m. Note that if we know the m-1 elements other than n in the part of π that contains n, then we can write down both parts of π . In other words we have a bijection from the set of partitions of $\{1, ..., n\}$ with with two parts of size m to the set of subsets of $\{1, ..., 2m-1\}$ with size m-1. So the number of partitions is $\binom{2m-1}{m-1}$.

(b) We prove the result by induction on *m*. It is clearly true if m = 1. Assume m > 1 and assume inductively that the result holds for m - 1. Suppose π is a partition of $\{1, ..., 2m\}$ and suppose that in π the element 2m is paired with *j*. If we delete the pair $\{j, 2m\}$ from π , what is left over is a partition of the set

$$\{1, ..., 2m - 1\} \setminus \{j\}$$

into m-1 pairs. By induction we find that the number of partitions of $\{1, ..., 2m\}$ into pairs where 2m is paired with j is equal to

$$(2(m-1)-1)(2(m-2)-1)\cdots 1 = (2m-3)(2m-5)\cdots 1$$

Since this does not depend on *j* and since we have 2m - 1 possible values for *j*, we conclude that the number of partitions of $\{1, ..., 2m\}$ into pairs is as stated.

3. (5 points) Construct a bijection between the even and odd subsets of {1,..., *n*}, and hence deduce that if *n* > 1,

$$\sum_{k\geq 0} \binom{n}{2k} = \sum_{k\geq 0} \binom{n}{2k+1}.$$

(Here we take the view that $\binom{n}{\ell} = 0$ if $n < \ell$.)

Solution: Let \mathcal{O} denote the set of odd subsets of $\{1, ..., n\}$. We define a function f on \mathcal{O} as follows. If $\alpha \in \mathcal{O}$ and $1 \in \alpha$, then

$$f(\alpha) = \alpha \setminus \{1\}$$

and if $1 \notin \alpha$ then

 $f(\alpha) = \alpha \cup \{1\}.$

If \mathcal{E} is the set of even subsets of $\{1, ..., n\}$, then f is defined on each element of \mathcal{O} and it maps \mathcal{O} to \mathcal{E} . We must show that f is a bijection.

Suppose α and β are distinct odd subsets. If $1 \in \alpha$ and $1 \notin \beta$ then $f(\alpha) \neq f(\beta)$ and similarly if $1 \notin \alpha$ and $1 \in \beta$ the $f(\alpha) \neq f(\beta)$. If 1 lies in both α and β then since $\alpha \neq \beta$ we have

$$f(\alpha) = \alpha \setminus \{1\} \neq \beta \setminus \{1\} = f(\beta).$$

Assignment 1

If neither α nor β contains 1, then $\alpha \cup 1 \neq \beta \cup 1$. We conclude that f is injective. We now show f is surjective. If γ is an even subset and $1 \notin \gamma$ then $\gamma = f(\gamma \cup 1)$; if $1 \in \gamma$ then $\gamma = f(\gamma \setminus 1)$. Hence f is surjective and therefore it is a bijection.

4. (4 points) Prove the identity in the last question by applying the binomial theorem and noting that $(1-1)^n = 0$ (when n > 0).

 $(1-x)^{n} = \sum_{k=0}^{n} \binom{n}{k} (-x)^{k}$ $= \sum_{\ell=0}^{n} \binom{n}{2\ell} (-x)^{2\ell} + \sum_{\ell=0}^{n} \binom{n}{2\ell+1} (-x)^{2\ell+1}$ $= \sum_{\ell=0}^{n} \binom{n}{2\ell} x^{2\ell} - \sum_{\ell=0}^{n} \binom{n}{2\ell+1} x^{2\ell+1}$

If we set x = 1 in this, our identity follows.

Solution: We have

5. (5 points) Let sur(n, k) denote the number of functions from an *n*-element set to a *k*-element set that are surjections. Prove that

$$m^n = \sum_{k=1}^m \binom{m}{k} \operatorname{sur}(n,k).$$

Solution: We note that m^n is the number of functions from an n element set (say N) to an m-element set (say M). The range of such a function is a non-empty subset of M. If $M_1 \subseteq M$ and $|M_1| = k$, the number of functions whose range is M_1 is equal to sur(n, k). Since M has $\binom{m}{k}$ such sets of size k, the number of functions whose range has size k is

$$\binom{m}{k}$$
sur (n,k)

and therefore

$$m^n = \sum_{k=1}^m \binom{m}{k} \operatorname{sur}(n,k).$$