- 1: Let R be a unique factorization domain. Prove each of the following statements.
 - (a) Every irreducible element in R is prime.
 - (b) For all $a_1, a_2, a_3, \dots \in \mathbf{R}$ with $\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \langle a_3 \rangle \subseteq \dots$, there exists $n \ge 1$ such that $\langle a_k \rangle = \langle a_n \rangle$ for all $k \ge n$.
 - (c) Every non-zero prime ideal in R contains a non-zero prime principal ideal.
 - (d) If for all $a, b \in R$ there exists $d \in R$ with $\langle d \rangle = \langle a, b \rangle$, then R is a principal ideal domain.
- 2: Consider the ring $\mathcal{C}^0(\mathbf{R})$ of continuous functions $f : \mathbf{R} \to \mathbf{R}$. Prove each of the following. (a) The units in $\mathcal{C}^0(\mathbf{R})$ are the nowhere zero functions, and the zero-divisors in $\mathcal{C}^0(\mathbf{R})$ are the functions which are not identically zero, but which are zero in some open interval.
 - (b) There are no irreducible elements and no prime elements in $\mathcal{C}^0(\mathbf{R})$.
 - (c) There exists an infinite ascending chain $\langle f_1 \rangle \not\subseteq \langle f_2 \rangle \not\subseteq \cdots$ of principal ideals in $\mathcal{C}^0(\mathbf{R})$
 - (d) There exist $f, g \in \mathcal{C}^0(\mathbf{R})$ such that $f \sim g$ but $f \neq gu$ for any unit u.
- **3:** Consider the ring F[[x]] of formal power series in x, where F is a field.
 - (a) Find the units in F|[x]|.
 - (b) Find the equivalence classes under association in F[[x]].
 - (c) Find the irreducible elements in F[[x]].
 - (d) Show that F[[x]] is a Euclidean domain.
- **4:** (a) List all of the irreducible elements $z \in \mathbb{Z}[\sqrt{6}i]$ with $||z|| \le 10$.
 - (b) List all of the elements $z \in \mathbb{Z}[\sqrt{6}i]$ with $||z|| \leq 10$ which do not factor uniquely.
 - (c) Show that $\mathbf{Z}\begin{bmatrix}\frac{1+\sqrt{11}\,i}{2}\end{bmatrix}$ is a Euclidean domain under the norm $N(z) = ||z||^2$.
 - (d) Show that $\mathbf{Z}\begin{bmatrix}\frac{1+\sqrt{43}i}{2}\end{bmatrix}$ is not a Euclidean domain under any norm.
- 5: For a positive integer d which is not a square, in the ring $\mathbf{Z}[\sqrt{d}]$ and in the field $\mathbf{Q}[\sqrt{d}]$, consider the norm given by $N(x + y\sqrt{d}) = |x^2 dy^2|$.
 - (a) Show that for all $z \in \mathbf{Q}[\sqrt{d}]$ we have $N(z) = 0 \iff z = 0$, and for all $z, w \in \mathbf{Q}[\sqrt{d}]$ we have N(zw) = N(z)N(w), and for all $z \in \mathbf{Z}[\sqrt{d}]$ we have $N(z) = 1 \iff z$ is a unit.
 - (b) Show that $\mathbf{Z}[\sqrt{3}]$ is a Euclidean domain under this norm.
 - (c) Show that $\mathbf{Z}[\sqrt{5}]$ is not a unique factorization domain.
 - (d) Show that $\mathbf{Z}[\sqrt{3}]$ and $\mathbf{Z}[\sqrt{5}]$ each have infinitely many units.