PMATH 351 Assignment #2 Due: Monday, October 17

1) Let d_1, d_2 and d_{∞} be the metrics on \mathbb{R}^n given by

$$
d_1(x, y) = \sum_{i=1}^{n} |x_i - y_i|
$$

$$
d_2(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}
$$

$$
d_{\infty}(x, y) = \max_{i=1, ..., n} |x_i - y_i|
$$

Let τ_1, τ_2 and τ_∞ be the topologies induced by the above metrics.

Show that $\tau_1 = \tau_2 = \tau_\infty$.

- 2) For each of the following sets determine if it is open, closed or neither. Indicate the set of limit points, boundary points and interior points of each set.
	- a) $(0, 1] \subset \mathbb{R}$.
	- n) $\mathbb{Q} \subset \mathbb{R}$.
	- c) $P_1 = \{a_0 + a_1x \mid a_i \in \mathbb{R}\} \subset (C[0, 1], d_{\infty}).$
	- d) $c_{00} = \{\{a_n\} \in l_\infty \mid a_n = 0 \text{ for all but finitely many } n \text{'s}\}\subset l_\infty.$

3) Least Upper Bound Property:

We say that α is an upper bound of $S \subset \mathbb{R}$ if $x \leq \alpha$ for all $x \in S$. We say that S is bounded above if it has an upper bound. We call α the *least upper bound* of S if α is an upper bound of S and if whenever β is an upper bound of S we have $\alpha \leq \beta$. We denote α by $lub(S)$ (We may define lower bounds and the *greatest lower bound* $(glb(S))$ in the obvious way) The Least Upper Bound Property states that every nonempty subset S of $\mathbb R$ that is bounded above has a least upper bound (or equivalently that every nonempty subset S of $\mathbb R$ that is bounded below has a greatest lower bound).

- a) Prove the Monotone Convergence Theorem: Let $\{a_n\}$ be a sequence in R with $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$. If $\{a_n\}$ is bounded above, then ${a_n}$ converges.
- **b**) Prove the Nested Interval Theorem: Let $\{[a_n, b_n]\}$ be a sequence of closed intervals with $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$ for each $n \in \mathbb{N}$. Then \bigcap^{∞} $n=1$ $[a_n, b_n] \neq \emptyset.$
- c) Show that the statement in Part b) may fail if we use open intervals.
- d) Use the Nested Interval Theorem to show that if $S \subset \mathbb{R}$ is infinite and bounded, then it has a cluster point. (This is called the Bolzano-Weierstrass Theorem.)
- e) Given a nonempty set $A \subset (X, d)$ we define the diameter of A to be $diam(A) = sup{d(x, y) | x, y \in A}$. Show that if A_n is a sequence of nonempty closed sets in $\mathbb R$ with $A_{n+1} \subseteq A_n$ and $diam(A_1) < \infty$, then \bigcap^{∞} $n=1$ $A_n \neq \emptyset$.

4) Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be a collection of open sets in $\mathbb R$ such that $[0,1] \subset \bigcup$ $\alpha \in I$ U_{α} .

- a) Show that there exists finitely many sets $U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n}$ such that $[0,1] \subset \bigcup^{n}$ $\bigcup_{i=1} U_{\alpha_i}.$
- b) Show that the statement in part a) can fail if we replace [0, 1] with $(0, 1)$.
- 5) A map $\phi: (X, d_X) \to (Y, d_Y)$ is called an isometry if $d_Y(\phi(x_1), \phi(x_2)) =$ $d_X(x_1, x_2)$.
	- a) Determine all possible isometries $\phi : \mathbb{R} \to \mathbb{R}$ and $\psi : \mathbb{R}^2 \to \mathbb{R}^2$ and show that each such map is surjective.
	- b) Give an example of an isometry $\phi: (X, d_X) \to (X, d_X)$ that is not onto.
- 6) A topological space (X, τ) is called separable if there exists a countable subset $S \subset X$ such that $\overline{S} = X$. Show that (l_1, d_1) is separable but (l_{∞}, d_{∞}) is not.
- 7) Let $\mathbf{x}_n = \{x_{n,1}, x_{n,2}, x_{n,3}, \ldots\} \in l_\infty$. Show that if $\mathbf{x}_n \to \mathbf{x}_0$ in l_∞ where $\mathbf{x}_0 = \{x_{0,1}, x_{0,2}, x_{0,3}, \ldots\},\$ then for each $k \in \mathbb{N}, \lim_{n \to \infty} x_{n,k} = x_{0,k}$ but that the converse can fail.
- 8) Let $P_0 = [0, 1]$. Let P_1 be obtained from P_0 by removing the open interval of length $\frac{1}{3}$ from the middle of P_0 . Then construct P_2 from P_1 by removing open intervals of length $\frac{1}{3^2}$ from the two closed subintervals of P_1 . In general, P_{n+1} is obtained from P_n by removing the open interval of length $\frac{1}{3^{n+1}}$ from the middle of each of the 2^n closed subintervals of P_n . Let

$$
P = \bigcap_{n=0}^{\infty} P_n.
$$

P is called the Cantor set.

- a) A subset A of a metric space is **nowhere dense** if $int\overline{A} = \emptyset$. Show that P is closed and nowhere dense.
- b) Show that P is uncountable. (Hint: You may use the fact that $x \in P$ if and only if we can express $x = \sum_{n=1}^{\infty}$ $n=1$ $\frac{a_n}{3^n}$ where $a_n = 0, 2$.)