PMATH 351 Assignment #2 Due: Monday, October 17

1) Let d_1, d_2 and d_{∞} be the metrics on \mathbb{R}^n given by

$$d_1(x, y) = \sum_{i=1}^n |x_i - y_i|$$
$$d_2(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
$$d_{\infty}(x, y) = \max_{i=1,\dots,n} |x_i - y_i|$$

Let τ_1, τ_2 and τ_∞ be the topologies induced by the above metrics.

Show that $\tau_1 = \tau_2 = \tau_{\infty}$.

- 2) For each of the following sets determine if it is open, closed or neither. Indicate the set of limit points, boundary points and interior points of each set.
 - a) $(0,1] \subset \mathbb{R}$.
 - n) $\mathbb{Q} \subset \mathbb{R}$.
 - c) $\mathcal{P}_1 = \{a_0 + a_1x \mid a_i \in \mathbb{R}\} \subset (C[0, 1], d_\infty).$
 - **d**) $c_{00} = \{\{a_n\} \in l_{\infty} \mid a_n = 0 \text{ for all but finitely many } n's\} \subset l_{\infty}$.

3) Least Upper Bound Property:

We say that α is an upper bound of $S \subset \mathbb{R}$ if $x \leq \alpha$ for all $x \in S$. We say that S is bounded above if it has an upper bound. We call α the *least upper bound* of S if α is an upper bound of S and if whenever β is an upper bound of S we have $\alpha \leq \beta$. We denote α by lub(S) (We may define lower bounds and the greatest lower bound (glb(S)) in the obvious way) The Least Upper Bound Property states that every nonempty subset S of \mathbb{R} that is bounded above has a least upper bound (or equivalently that every nonempty subset S of \mathbb{R} that is bounded above has a greatest lower bound).

- a) Prove the Monotone Convergence Theorem: Let $\{a_n\}$ be a sequence in \mathbb{R} with $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$. If $\{a_n\}$ is bounded above, then $\{a_n\}$ converges.
- **b)** Prove the Nested Interval Theorem: Let $\{[a_n, b_n]\}$ be a sequence of closed intervals with $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$ for each $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$.
- c) Show that the statement in Part b) may fail if we use open intervals.
- d) Use the Nested Interval Theorem to show that if $S \subset \mathbb{R}$ is infinite and bounded, then it has a cluster point. (This is called the Bolzano-Weierstrass Theorem.)
- e) Given a nonempty set $A \subset (X, d)$ we define the diameter of A to be $diam(A) = sup\{d(x, y) \mid x, y \in A\}$. Show that if A_n is a sequence of nonempty closed sets in \mathbb{R} with $A_{n+1} \subseteq A_n$ and $diam(A_1) < \infty$, then $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

4) Let $\{U_{\alpha}\}_{\alpha \in I}$ be a collection of open sets in \mathbb{R} such that $[0,1] \subset \bigcup_{\alpha \in I} U_{\alpha}$.

- **a)** Show that there exists finitely many sets $U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n}$ such that $[0,1] \subset \bigcup_{i=1}^n U_{\alpha_i}.$
- **b)** Show that the statement in part a) can fail if we replace [0, 1] with (0, 1).
- 5) A map $\phi : (X, d_X) \to (Y, d_Y)$ is called an isometry if $d_Y(\phi(x_1), \phi(x_2)) = d_X(x_1, x_2)$.
 - a) Determine all possible isometries $\phi : \mathbb{R} \to \mathbb{R}$ and $\psi : \mathbb{R}^2 \to \mathbb{R}^2$ and show that each such map is surjective.
 - **b)** Give an example of an isometry $\phi : (X, d_X) \to (X, d_X)$ that is not onto.
- 6) A topological space (X, τ) is called separable if there exists a countable subset S ⊂ X such that S = X.
 Show that (l₁, d₁) is separable but (l_∞, d_∞) is not.

- 7) Let $\mathbf{x}_n = \{x_{n,1}, x_{n,2}, x_{n,3}, \ldots\} \in l_{\infty}$. Show that if $\mathbf{x}_n \to \mathbf{x}_0$ in l_{∞} where $\mathbf{x}_0 = \{x_{0,1}, x_{0,2}, x_{0,3}, \ldots\}$, then for each $k \in \mathbb{N}$, $\lim_{n \to \infty} x_{n,k} = x_{0,k}$ but that the converse can fail.
- 8) Let $P_0 = [0, 1]$. Let P_1 be obtained from P_0 by removing the open interval of length $\frac{1}{3}$ from the middle of P_0 . Then construct P_2 from P_1 by removing open intervals of length $\frac{1}{3^2}$ from the two closed subintervals of P_1 . In general, P_{n+1} is obtained from P_n by removing the open interval of length $\frac{1}{3^{n+1}}$ from the middle of each of the 2^n closed subintervals of P_n . Let

$$P = \bigcap_{n=0}^{\infty} P_n$$

P is called the Cantor set.

- a) A subset A of a metric space is **nowhere dense** if $int\overline{A} = \emptyset$. Show that P is closed and nowhere dense.
- **b)** Show that *P* is uncountable. (Hint: You may use the fact that $x \in P$ if and only if we can express $x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}$ where $a_n = 0, 2$.)