PMATH 351 Assignment 3

Due: Friday November 4

1 a) Let (X, d) be a metric space. Let $x_0 \in X$ be fixed. Define $F_{x_0}: X \to \mathbb{R}$ by

$$
F_{x_0}(x) = d(x_0, x)
$$

Show that F_{x_0} is continuous.

b) Let $(X, \|\cdot\|)$ be a normed linear space. $F : X \to \mathbb{R}$ by

$$
F(x) = ||x||
$$

Show that F is continuous.

2) A function $f : (X, d_X) \to (Y, d_Y)$ is said to be uniformly continuous if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $d_X(x_1, x_2) < \delta$, then $d_Y(f(x_1), f(x_2)) < \epsilon.$

Let $f : (X, d_X) \to (Y, d_Y)$ be uniformly continuous. Show that if $\{x_n\}$ is Cauchy in X, then $\{f(x_n)\}\$ is Cauchy in Y.

3) Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed linear spaces. Let $T : X \to Y$ be linear. We say that T is bounded is

$$
\sup_{\|x\|_X\leq 1} \{\|T(x)\|_Y\} < \infty.
$$

In this case, we write

$$
\| T \| = \sup_{\|x\|_X \le 1} \{ \| T(x) \|_Y \}.
$$

Otherwise, we say that T is unbounded.

- a) Prove that the following are equivalent
	- i) T is continuous.
	- ii) T is continuous at 0.
	- iii) T is bounded.
- b) Assume that $L : \mathbb{R}^n \to \mathbb{R}^n$ is linear and that L is represented by the matrix A. We let $|| A ||=|| L ||$.
	- i) Assume that

$$
D = \begin{bmatrix} d_1 & & & & \\ & d_2 & & & \\ & & d_3 & & \\ & & & \ddots & \\ & & & & d_n \end{bmatrix}
$$

is a diagonal matix. Show that $||D|| = \max_{i=1,\dots,n} {||d_i||}.$

ii) Show that if

$$
D = \begin{bmatrix} d_1 & & & & \\ & d_2 & & & \\ & & d_3 & & \\ & & & \ddots & \\ & & & & d_n \end{bmatrix}
$$

is a diagonal matix, then

$$
\sup_{\|x\| \le 1} \{|< Dx, x>|\} = \max_{i=1,\cdots,n} \{|d_i|\}.
$$

- iii) Let U be an orthonormal $n \times n$ matrix. Show that if $x \in \mathbb{R}^n$, then $\|Ux\|=\|x\|.$
- iv) Assume that $L : \mathbb{R}^n \to \mathbb{R}^n$ is linear and that L is represented by the matrix A. Show that $|| L ||=|| A ||= \sqrt{|\alpha|}$ where α is the largest eigenvalue of the matrix A^tA .
- iv) Assume that $L : \mathbb{R}^2 \to \mathbb{R}^2$ is represented by the matrix

$$
A = \left[\begin{array}{cc} 1 & 1 \\ 2 & -1 \end{array} \right]
$$

Find $\parallel A \parallel$. (You can use Maple or MATLAB if you like.)

4) Let $x_0 \in [0,1]$. Define $T_{x_0} : C[0,1] \to \mathbb{R}$ by

$$
T_{x_0}(f) = f(x_0)
$$

- a) Show that T_{x_0} is linear.
- b) Show that as a map from $(C[0,1], \| \cdot \|_{\infty}) \to \mathbb{R}, T_{x_0}$ is bounded with $||T_{x_0}||= 1.$
- c) Show that as a map from $(C[0, 1], || \cdot ||_1) \to \mathbb{R}, T_0$ is unbounded.
- 5) Define $T: C[0,1] \to \mathbb{R}$ by

$$
T(f) = \int_0^1 x f(x) dx.
$$

- a) Show that T is linear.
- **b**) Show that if $|| f(x) ||_{\infty} \leq 1$, then $| T(f) | \leq \frac{1}{2}$.
- c) Show that $T(1) = \frac{1}{2}$ and hence that $\|T\| = \frac{1}{2}$ $\frac{1}{2}$.
- 6 Let (X, d) and (Y, d) be metric spaces. We say that a function f: $(X, d_X) \to (Y, d_Y)$ is bounded if $range(f) = \{f(x) | x \in X\}$ is bounded in Y . (Note: This is different than the notion of boundedness introduced for linear maps between normed-linear spaces.)

Let

 $C_b(X, Y) = \{f : X \to Y \mid f \text{ is continuous and bounded}\}\$

Define a function d_{∞} on $C_b(X, Y) \times C_b(X, Y)$ by

$$
d_{\infty}(f,g) = \sup_{x \in X} \{ d_Y(f(x), g(x)) \}
$$

- a) Show that d_{∞} determines a norm on $C_b(X, Y)$.
- **b)** Show that if (Y, d) is complete, then so is $(C_b(X, Y), d_\infty)$.
- 7) Let $f : \mathbb{R} \to \mathbb{R}$. Let

$$
D(f) = \{ x \in \mathbb{R} \mid f(x) \text{ is discontinuous at } x \}.
$$

For each $n \in \mathbb{N}$, let $D_n = \{x \in \mathbb{R} \mid \text{ for every } \delta > 0, \text{ there exists } y, z \text{ with } \delta > 0 \}$ $|x - y| < \delta, |x - z| < \delta$ but $|f(y) - f(z)| \geq \frac{1}{n}$.

a) Show that for each $n \in \mathbb{N}$, D_n is closed.

b) A subset A of a metric space is said to be an F_{σ} set if $A = \bigcup_{\sigma=0}^{\infty}$ $n=1$ F_n where each F_n is closed. Show that $D(f)$ is an F_{σ} set by showing that

$$
D(f) = \bigcup_{n=1}^{\infty} D_n.
$$