PMATH 351 Assignment 3

Due: Friday November 4

1 a) Let (X, d) be a metric space. Let $x_0 \in X$ be fixed. Define $F_{x_0} : X \to \mathbb{R}$ by

$$F_{x_0}(x) = d(x_0, x)$$

Show that F_{x_0} is continuous.

b) Let $(X, \|\cdot\|)$ be a normed linear space. $F: X \to \mathbb{R}$ by

$$F(x) = \parallel x \parallel$$

Show that F is continuous.

2) A function f : (X, d_X) → (Y, d_Y) is said to be uniformly continuous if for every ε > 0 there exists a δ > 0 such that if d_X(x₁, x₂) < δ, then d_Y(f(x₁), f(x₂)) < ε.

Let $f: (X, d_X) \to (Y, d_Y)$ be uniformly continuous. Show that if $\{x_n\}$ is Cauchy in X, then $\{f(x_n)\}$ is Cauchy in Y.

3) Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed linear spaces. Let $T: X \to Y$ be linear. We say that T is bounded is

$$\sup_{\|x\|_X \le 1} \{ \| T(x) \|_Y \} < \infty.$$

In this case, we write

$$|| T || = \sup_{||x||_X \le 1} \{|| T(x) ||_Y \}.$$

Otherwise, we say that T is unbounded.

- a) Prove that the following are equivalent
 - i) T is continuous.
 - ii) T is continuous at 0.
 - iii) T is bounded.

- **b)** Assume that $L : \mathbb{R}^n \to \mathbb{R}^n$ is linear and that L is represented by the matrix A. We let ||A|| = ||L||.
 - i) Assume that

$$D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & d_3 & & \\ & & & \ddots & \\ & & & & d_n \end{bmatrix}$$

is a diagonal matix. Show that $|| D || = \max_{i=1,\dots,n} \{| d_i |\}.$

ii) Show that if

$$D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & d_3 & & \\ & & & \ddots & \\ & & & & d_n \end{bmatrix}$$

is a diagonal matix, then

$$\sup_{\|x\| \le 1} \{ |< Dx, x>| \} = \max_{i=1,\dots,n} \{ |d_i| \}.$$

- iii) Let U be an orthonormal $n \times n$ matrix. Show that if $x \in \mathbb{R}^n$, then || Ux || = || x ||.
- iv) Assume that $L : \mathbb{R}^n \to \mathbb{R}^n$ is linear and that L is represented by the matrix A. Show that $|| L || = || A || = \sqrt{|\alpha|}$ where α is the largest eigenvalue of the matrix $A^t A$.
- iv) Assume that $L:\mathbb{R}^2\to\mathbb{R}^2$ is represented by the matrix

$$A = \left[\begin{array}{rr} 1 & 1 \\ 2 & -1 \end{array} \right]$$

Find ||A||. (You can use Maple or MATLAB if you like.)

4) Let $x_0 \in [0,1]$. Define $T_{x_0} : C[0,1] \to \mathbb{R}$ by

$$T_{x_0}(f) = f(x_0)$$

- **a)** Show that T_{x_0} is linear.
- **b)** Show that as a map from $(C[0,1], \|\cdot\|_{\infty}) \to \mathbb{R}, T_{x_0}$ is bounded with $\|T_{x_0}\| = 1$.
- c) Show that as a map from $(C[0,1], \|\cdot\|_1) \to \mathbb{R}, T_0$ is unbounded.
- **5)** Define $T: C[0,1] \to \mathbb{R}$ by

$$T(f) = \int_0^1 x f(x) dx.$$

- a) Show that T is linear.
- **b)** Show that if $|| f(x) ||_{\infty} \le 1$, then $|T(f)| \le \frac{1}{2}$.
- c) Show that $T(1) = \frac{1}{2}$ and hence that $|| T || = \frac{1}{2}$.
- **6** Let (X, d) and (Y, d) be metric spaces. We say that a function f: $(X, d_X) \to (Y, d_Y)$ is bounded if $range(f) = \{f(x) \mid x \in X\}$ is bounded in Y. (Note: This is different than the notion of boundedness introduced for linear maps between normed-linear spaces.)

Let

 $C_b(X,Y) = \{f : X \to Y \mid f \text{ is continuous and bounded}\}\$

Define a function d_{∞} on $C_b(X, Y) \times C_b(X, Y)$ by

$$d_{\infty}(f,g) = \sup_{x \in X} \{ d_Y(f(x),g(x)) \}$$

- **a)** Show that d_{∞} determines a norm on $C_b(X, Y)$.
- **b)** Show that if (Y, d) is complete, then so is $(C_b(X, Y), d_\infty)$.
- 7) Let $f : \mathbb{R} \to \mathbb{R}$. Let

$$D(f) = \{x \in \mathbb{R} \mid f(x) \text{ is discontinuous at } x\}$$

For each $n \in \mathbb{N}$, let $D_n = \{x \in \mathbb{R} \mid \text{ for every } \delta > 0, \text{ there exists } y, z \text{ with} | x - y | < \delta, | x - z | < \delta \text{ but } | f(y) - f(z) | \ge \frac{1}{n} \}.$

a) Show that for each $n \in \mathbb{N}$, D_n is closed.

b) A subset A of a metric space is said to be an F_{σ} set if $A = \bigcup_{n=1}^{\infty} F_n$ where each F_n is closed. Show that D(f) is an F_{σ} set by showing that

$$D(f) = \bigcup_{n=1}^{\infty} D_n.$$