
PMATH 351 Assignment 4
Due: Monday, December 5

1) (∗) Let (X,‖ · ‖) be a normed linear space.

a) Prove that if A ⊂ (X,‖ · ‖) is compact and nonempty, then for
each x0 ∈ X there exist a y0 ∈ A such that

‖ x0 − y0 ‖= inf{‖ x0 − y ‖| y ∈ A}.

b) Assume that X is finite dimensional. Prove that if A ⊂ (X,‖ · ‖)
is closed and nonempty, then for each x0 ∈ X there exist a y0 ∈ A
such that

‖ x0 − y0 ‖= inf{‖ x0 − y ‖| y ∈ A}.

c) A subset A of a vector space is said to be convex if αx+(1−α)y ∈
A whenever x, y ∈ A and 0 ≤ α ≤ 1.

Let A ⊆ R2 be convex and closed an let x0 ∈ Ac. Show that if
R2 is given the norm ‖ · ‖2, then the point y0 obtained in part b)
above is unique but that this need not be the case if we use the
norm ‖ · ‖∞.

d) Let A ⊆ (X, d) be nonempty and let x0 ∈ X. Define the distance
from x0 to A by dist(x0, A) = inf{d(x0, a) | a ∈ A}. Show that
the function f(x) = dist(x,A) is continuous. (Note: Do not
hand in.)

e) Given A,B ⊆ X nonempty sets, define dist(A,B) = inf{d(a, b) |
a ∈ A, b ∈ B}. Show that if A is closed, B is compact with
A ∩B = ∅, then dist(A,B) > 0.

f) Show that even in R, e) can fail if you only assume that B is
closed.

Let Pn = {p(x) = a0 + a1x+ · · ·+ anx
n | ai ∈ R}.

g) Let f(x) ∈ C[0, 1]. Show that there exists a polynomial p(x) ∈ Pn
such that

‖ f(x)− p(x) ‖∞≤‖ f(x)− q(x) ‖∞
for any q(x) ∈ Pn.
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h) Show that if {pk(x)} is a sequence of polynomials such that {pk(x)}
converges uniformly to f(x) = ex on [0, 1], then

lim
k→∞

degree(pk(x)) =∞.

2) (∗) Let (X, dX) be a compact metric space. Let f : (X, dX)→ (Y, dY ) be
continuous, 1-1 and onto, prove that f−1 is also continuous.

3) Connectedness and Path Connectedness:

Let (X, dX) be a metric space. A continuous path joining x, y ∈ X is
a continuous function γ : [a, b] → X such that γ(a) = x and γ(b) = y.
A subset U of X is path connected if for each x, y ∈ A, there exists a
continuous path γ joining x, y with γ(t) ∈ U for all t ∈ [a, b].

a) Show that if A ⊂ R, then A is path connected if and only if A is
an interval. (One direction is the Intermediate Value Theorem.)

b) (∗) For each of the following subsets of R2 indicate whether or
not the set is path connected. (You do not need to justify your
answer)

i) A1 = {(x, y) | x2 + y2 ≤ r}
ii) A2 = {(x, y) | xy ≥ 1 and x > 1}

⋃
{(x, y) | xy ≤ 1 and x ≤ 1}

iii) A3 = {(x, y) | y = sin( 1
x
), x 6= 0}

⋃
{(0, 0)}

iv) A4 = {(x, y) | either x ∈ Q or y ∈ Q}

c) Let A ⊆ (X, dX) be path connected. Let f : A → (Y, dY ) be
continuous. Show that f(A) is path connetcted.

Let A ⊆ (X, dX). We say that A is disconnected if there exists two open
sets U and V such that

i) U
⋂
V
⋂
A = ∅

ii) U
⋂
A 6= ∅ and V

⋂
A 6= ∅

iii) A ⊆ U
⋃
V

We say that A is connected if it is not disconnected.
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d) Show that if A ⊆ (X, dX) is path connected, then it is connected.
(Note: This shows that Rn is connected).

e) (*) Give an example of a set A ⊂ R2 that is connected but not
path connected. (Hint: Look at b) above. You do not need to
justify your choice.)

f) (∗) Let A ⊆ (X, dX) be connected. Let f : A → (Y, dY ) be
continuous. Show that f(A) is connected.

4) a) (∗) Assume that F ⊂ R is closed and nowhere dense. Let

f(x) = χF (x) =

{
1 if x ∈ F
0 if x ∈ F c .

Find D(f).

b) (∗) Show that if A ⊂ R is Fσ and of first category, then there exists a
function f(x) on R with D(f) = A. (Hint: You may assume without

proof that A =
∞⋃
n=1

Fn where Fn is closed and nowhere dense. )

5) a) (∗) Dini’s Theorem: Let (X, d) be a compact metric space. Let
{fn(x)} be a sequence of continuous functions on X such that fn(x) ≤
fn+1(x) for each n ∈ N and f(x) = lim

n→∞
fn(x). Show that f(x) is

continuous on X if and only if the sequence converges uniformly. (Hint:
Let ε > 0. Let Un = {x ∈ X | fn(x) > f(x)− ε} and show that {Un} is
an open cover of X.)

b) (∗) Show that Dini’s Theorem fails on [0,∞) by giving a sequence {fn(x)}
of continuous functions on [0,∞) such that fn(x) ≤ fn+1(x) for each
n ∈ N and lim

n→∞
fn(x) = 1 for each x but for which the convergence is

not uniform.

6) Show that if (X, ‖ · ‖) is an infinite dimensional Banach space, then X
must have uncountable dimension.
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7) Let f(x) be continuous on [0, 1]. Assume that∫ 1

0

f(x) dx = 0

and that ∫ 1

0

f(x)xn dx = 0

for each n ∈ N. Show that f(x) = 0 for all x ∈ [0, 1].

8) a) Let X = [0, 1] × [0, 1] ⊂ (R2, ‖ · ‖2). Let f(x, y) ∈ C(X). For each
y ∈ [0, 1] define fy(x) = f(x, y) for each x ∈ [0, 1]. Show that F = {fy |
y ∈ [0, 1]} is equicontinuous.

b) Show that the map Γ : [0, 1]→ (C[0, 1], ‖ · ‖∞) given by

Γ(y) = fy

is continuous.

b) Is F compact in C(X)? Explain your answer.

9) (∗) Let

Ψ = {F (x, y) ∈ C([0, 1]× [0, 1] | F (x, y) =
k∑
i=1

fi(x)gi(y)}

where in the sum above the functions fi and gi are continuous on [0, 1].
Show that Ψ is dense in C([0, 1]× [0, 1]).

10) Let I be a closed ideal of of C[0, 1]. (That is I is a closed subalgebra
of C[0, 1] with the property that if g(x) ∈ I and if f(x) ∈ C[0, 1], then
f(x)g(x) ∈ I.)

a) Let Z(I) = {x ∈ [0, 1] | f(x) = 0 for every f ∈ I}. Show that Z(I) is a
closed subset of [0, 1].

b) Show that if Z(I) = ∅, then I = C[0, 1]. (Hint: Show that there exists a
function f(x) ∈ I such that f(x) > 0 for every x ∈ [0, 1]).
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c) Let A ⊆ [0, 1] be closed. Let I(A) = {f ∈ C[0, 1] | f(x) = 0 for every x ∈
A}. Show that I is a maximal closed idea in C[0, 1] if and only if
I = I({x0}) for some x0 ∈ [0, 1].

(Recall: A closed ideal I is maximal if I 6= C[0, 1] and if J is any closed
ideal containing I, then either I = J or J = C[0, 1].)

11) Let g(x) be continuous and strictly increasing on [a, b]. Let f(x) ∈
C[a, b]. Let ε > 0. Then there exists constants c0, c1, . . . , cn such that

| f(x)−
n∑
k=0

ckg
k(x) |< ε

for each x ∈ [a, b].

12 a) (∗) Fredholm Equation: Assume that K(x, y) ∈ C([a, b] × [a, b])
with ‖ K(x, y) ‖∞= M. Show that if | λ | M(b − a) < 1 and if
ϕ(x) ∈ C[a, b], then the map Γ : C[a, b]→ C[a, b] given by

Γ(f)(x) = ϕ(x) + λ

∫ b

a

K(x, y)f(y)dy

is contractive and hence that the integral equation

f(x) = ϕ(x) + λ

∫ b

a

K(x, y)f(y)dy

has a unique solution in C[a, b].

b) Volterra Equation: Assume that K(x, y) ∈ C([a, b] × [a, b]) with ‖
K(x, y) ‖∞= M. Let λ ∈ R and ϕ(x) ∈ C[a, b]. Define Γ : C[a, b] →
C[a, b] by

Γ(f)(x) = ϕ(x) + λ

∫ x

a

K(x, y)f(y)dy.

i) Show that for each n ∈ N that

‖ Γ(f)− Γ(g) ‖∞≤| λ |n Mn (b− a)n

n!

and hence that Γ(n) = Γ◦Γ◦ · · · ◦Γ is contractive for large enough
n.
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ii) (*) Show that Γ has a unique fixed point and hence that the
integral equation

f(x) = ϕ(x) + λ

∫ x

a

K(x, y)f(y)dy

has a unique solution in C[a, b].

discontinuities).
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