PMATH 351 Assignment 4 Due: Monday, December 5

- 1) (*) Let $(X, \|\cdot\|)$ be a normed linear space.
	- a) Prove that if $A \subset (X, \|\cdot\|)$ is compact and nonempty, then for each $x_0 \in X$ there exist a $y_0 \in A$ such that

$$
\| x_0 - y_0 \| = \inf \{ \| x_0 - y \| \| y \in A \}.
$$

b) Assume that X is finite dimensional. Prove that if $A \subset (X, \|\cdot\|)$ is closed and nonempty, then for each $x_0 \in X$ there exist a $y_0 \in A$ such that

$$
\|x_0 - y_0\| = \inf\{\|x_0 - y\| \mid y \in A\}.
$$

c) A subset A of a vector space is said to be convex if $\alpha x + (1-\alpha)y \in$ A whenever $x, y \in A$ and $0 \leq \alpha \leq 1$.

Let $A \subseteq \mathbb{R}^2$ be convex and closed an let $x_0 \in A^c$. Show that if \mathbb{R}^2 is given the norm $\|\cdot\|_2$, then the point y_0 obtained in part b) above is unique but that this need not be the case if we use the norm $\|\cdot\|_{\infty}$.

- d) Let $A \subseteq (X, d)$ be nonempty and let $x_0 \in X$. Define the distance from x_0 to A by $dist(x_0, A) = \inf\{d(x_0, a) \mid a \in A\}$. Show that the function $f(x) = dist(x, A)$ is continuous. (Note: Do not hand in.)
- e) Given $A, B \subseteq X$ nonempty sets, define $dist(A, B) = \inf \{d(a, b) \mid$ $a \in A, b \in B$. Show that if A is closed, B is compact with $A \cap B = \emptyset$, then $dist(A, B) > 0$.
- f) Show that even in \mathbb{R} , e) can fail if you only assume that B is closed.

Let $P_n = \{p(x) = a_0 + a_1x + \cdots + a_nx^n \mid a_i \in \mathbb{R}\}.$

g) Let $f(x) \in C[0, 1]$. Show that there exists a polynomial $p(x) \in P_n$ such that

$$
\|f(x) - p(x)\|_{\infty} \le \|f(x) - q(x)\|_{\infty}
$$

for any $q(x) \in P_n$.

h) Show that if $\{p_k(x)\}\$ is a sequence of polynomials such that $\{p_k(x)\}\$ converges uniformly to $f(x) = e^x$ on [0, 1], then

$$
\lim_{k \to \infty} degree(p_k(x)) = \infty.
$$

2) (*) Let (X, d_X) be a compact metric space. Let $f : (X, d_X) \to (Y, d_Y)$ be continuous, 1-1 and onto, prove that f^{-1} is also continuous.

3) Connectedness and Path Connectedness:

Let (X, d_X) be a metric space. A continuous path joining $x, y \in X$ is a continuous function $\gamma : [a, b] \to X$ such that $\gamma(a) = x$ and $\gamma(b) = y$. A subset U of X is path connected if for each $x, y \in A$, there exists a continuous path γ joining x, y with $\gamma(t) \in U$ for all $t \in [a, b]$.

- a) Show that if $A \subset \mathbb{R}$, then A is path connected if and only if A is an interval. (One direction is the Intermediate Value Theorem.)
- b) $(*)$ For each of the following subsets of \mathbb{R}^2 indicate whether or not the set is path connected. (You do not need to justify your answer)
	- i) $A_1 = \{(x, y) \mid x^2 + y^2 \le r\}$ ii) $A_2 = \{(x, y) \mid xy \ge 1 \text{ and } x > 1\} \bigcup \{(x, y) \mid xy \le 1 \text{ and } x \le 1\}$ iii) $A_3 = \{(x, y) | y = \sin(\frac{1}{x}), x \neq 0\} \cup \{(0, 0)\}\$ iv) $A_4 = \{(x, y) \mid \text{either } x \in Q \text{ or } y \in Q\}$
- c) Let $A \subseteq (X, d_X)$ be path connected. Let $f : A \rightarrow (Y, d_Y)$ be continuous. Show that $f(A)$ is path connetcted.
- Let $A \subseteq (X, d_X)$. We say that A is *disconnected* if there exists two open sets U and V such that
	- i) $U \cap V \cap A = \emptyset$

ii)
$$
U \cap A \neq \emptyset
$$
 and $V \cap A \neq \emptyset$

iii) $A \subseteq U \bigcup V$

We say that A is *connected* if it is not disconnected.

- d) Show that if $A \subseteq (X, d_X)$ is path connected, then it is connected. (Note: This shows that \mathbb{R}^n is connected).
- e) (*) Give an example of a set $A \subset \mathbb{R}^2$ that is connected but not path connected. (Hint: Look at b) above. You do not need to justify your choice.)
- f) (*) Let $A \subseteq (X, d_X)$ be connected. Let $f : A \rightarrow (Y, d_Y)$ be continuous. Show that $f(A)$ is connected.
- 4) a) (*) Assume that $F \subset \mathbb{R}$ is closed and nowhere dense. Let

$$
f(x) = \chi_F(x) = \begin{cases} 1 & \text{if } x \in F \\ 0 & \text{if } x \in F^c \end{cases}
$$

.

Find $D(f)$.

- b) (*) Show that if $A \subset \mathbb{R}$ is F_{σ} and of first category, then there exists a function $f(x)$ on R with $D(f) = A$. (Hint: You may assume without proof that $A = \bigcup_{n=1}^{\infty} A_n$ $n=1$ F_n where F_n is closed and nowhere dense.)
- 5) a) (*) Dini's Theorem: Let (X, d) be a compact metric space. Let ${f_n(x)}$ be a sequence of continuous functions on X such that $f_n(x) \le$ $f_{n+1}(x)$ for each $n \in \mathbb{N}$ and $f(x) = \lim_{n \to \infty} f_n(x)$. Show that $f(x)$ is continuous on X if and only if the sequence converges uniformly. (Hint: Let $\epsilon > 0$. Let $U_n = \{x \in X \mid f_n(x) > f(x) - \epsilon\}$ and show that $\{U_n\}$ is an open cover of X .)
- b) (*) Show that Dini's Theorem fails on $[0, \infty)$ by giving a sequence $\{f_n(x)\}$ of continuous functions on $[0,\infty)$ such that $f_n(x) \leq f_{n+1}(x)$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} f_n(x) = 1$ for each x but for which the convergence is not uniform.
- 6) Show that if $(X, \|\cdot\|)$ is an infinite dimensional Banach space, then X must have uncountable dimension.

7) Let $f(x)$ be continuous on [0, 1]. Assume that

$$
\int_0^1 f(x) \, dx = 0
$$

and that

$$
\int_0^1 f(x)x^n dx = 0
$$

for each $n \in \mathbb{N}$. Show that $f(x) = 0$ for all $x \in [0, 1]$.

- 8) a) Let $X = [0,1] \times [0,1] \subset (\mathbb{R}^2, \|\cdot\|_2)$. Let $f(x, y) \in C(X)$. For each $y \in [0, 1]$ define $f_y(x) = f(x, y)$ for each $x \in [0, 1]$. Show that $\mathcal{F} = \{f_y \mid$ $y \in [0, 1]$ is equicontinuous.
- b) Show that the map $\Gamma : [0,1] \to (C[0,1], \|\cdot\|_{\infty})$ given by

$$
\Gamma(y) = f_y
$$

is continuous.

- b) Is $\mathcal F$ compact in $C(X)$? Explain your answer.
- 9) (∗) Let

$$
\Psi = \{ F(x, y) \in C([0, 1] \times [0, 1] \mid F(x, y) = \sum_{i=1}^{k} f_i(x) g_i(y) \}
$$

where in the sum above the functions f_i and g_i are continuous on [0, 1]. Show that Ψ is dense in $C([0,1] \times [0,1])$.

- 10) Let I be a closed ideal of of $C[0, 1]$. (That is I is a closed subalgebra of $C[0,1]$ with the property that if $g(x) \in I$ and if $f(x) \in C[0,1]$, then $f(x)g(x) \in I.$
- a) Let $Z(I) = \{x \in [0,1] \mid f(x) = 0 \text{ for every } f \in I\}$. Show that $Z(I)$ is a closed subset of $[0, 1]$.
- b) Show that if $Z(I) = \emptyset$, then $I = C[0, 1]$. (Hint: Show that there exists a function $f(x) \in I$ such that $f(x) > 0$ for every $x \in [0, 1]$.

c) Let $A \subseteq [0,1]$ be closed. Let $I(A) = \{f \in C[0,1] \mid f(x) = 0 \text{ for every } x \in \mathbb{R}\}$ A}. Show that I is a maximal closed idea in $C[0, 1]$ if and only if $I = I({x_0})$ for some $x_0 \in [0, 1]$.

(Recall: A closed ideal I is maximal if $I \neq C[0, 1]$ and if J is any closed ideal containing I, then either $I = J$ or $J = C[0, 1]$.)

11) Let $q(x)$ be continuous and strictly increasing on [a, b]. Let $f(x) \in$ $C[a, b]$. Let $\epsilon > 0$. Then there exists constants c_0, c_1, \ldots, c_n such that

$$
|f(x) - \sum_{k=0}^{n} c_k g^k(x)| < \epsilon
$$

for each $x \in [a, b]$.

12 a) (*) Fredholm Equation: Assume that $K(x, y) \in C([a, b] \times [a, b])$ with $\| K(x, y) \|_{\infty} = M$. Show that if $| \lambda | M(b - a) < 1$ and if $\varphi(x) \in C[a, b]$, then the map $\Gamma : C[a, b] \to C[a, b]$ given by

$$
\Gamma(f)(x) = \varphi(x) + \lambda \int_a^b K(x, y) f(y) dy
$$

is contractive and hence that the integral equation

$$
f(x) = \varphi(x) + \lambda \int_a^b K(x, y) f(y) dy
$$

has a unique solution in $C[a, b]$.

b) Volterra Equation: Assume that $K(x, y) \in C([a, b] \times [a, b])$ with \parallel $K(x, y) \|_{\infty} = M$. Let $\lambda \in \mathbb{R}$ and $\varphi(x) \in C[a, b]$. Define $\Gamma : C[a, b] \to$ $C[a, b]$ by

$$
\Gamma(f)(x) = \varphi(x) + \lambda \int_a^x K(x, y) f(y) dy.
$$

i) Show that for each $n \in \mathbb{N}$ that

$$
\| \Gamma(f) - \Gamma(g) \|_{\infty} \leq |\lambda|^{n} M^{n} \frac{(b-a)^{n}}{n!}
$$

and hence that $\Gamma^{(n)} = \Gamma \circ \Gamma \circ \cdots \circ \Gamma$ is contractive for large enough \overline{n} .

ii) (*) Show that Γ has a unique fixed point and hence that the integral equation

$$
f(x) = \varphi(x) + \lambda \int_a^x K(x, y) f(y) dy
$$

has a unique solution in ${\cal C}[a,b].$

discontinuities).