
PMATH 351 Assignment 3
Solutions

1 a) Let (X, d) be a metric space. Let x0 ∈ X be fixed. Define Fx0 : X → R
by

Fx0(x) = d(x0, x)

Show that Fx0 is continuous.

Solution

Observe that if x, y, z ∈ X, then the triangle inequality shows that
d(x, z) ≤ d(x, y) + d(y, z) = d(x, y) + d(z, y) and hence that

d(x, z)− d(x, y) ≤ d(z, y)

A similar calculation shows that

d(x, y)− d(x, z) ≤ d(z, y)

so we have
| d(x, z)− d(x, y) |≤ d(z, y)

Let x0 ∈ X be fixed. Let y ∈ X and let ε > 0. If d(z, y) < ε, then

| Fx0(z)− Fx0(y) |=| d(x0, z)− d(x0, y) |≤ d(z, y) < ε

Hence Fx0 is (uniformly) continuous on X.

b) Let (X, ‖ · ‖) be a normed linear space. F : X → R by

F (x) =‖ x ‖

Show that F is continuous.

Solution

Since d(0, x) =‖ x ‖, it is easy to see that F (x) = F0(x) in the notation
above and is therefore continuous.
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2) A function f : (X, dX) → (Y, dY ) is said to be uniformly continuous if
for every ε > 0 there exists a δ > 0 such that if dX(x1, x2) < δ, then
dY (f(x1), f(x2)) < ε.

Let f : (X, dX)→ (Y, dY ) be uniformly continuous. Show that if {xn}
is Cauchy in X, then {f(xn)} is Cauchy in Y .

Solution

Let {xn} be Cauchy in X and let ε > 0. Then there exists a δ > 0 such
that if dX(u,w) < δ, then dY (f(u), f(w)) < ε. But as {xn} is Cauchy
in X, we can find an N so that if n,m ≥ N , then dX(xn, xm) < δ. It
then follows that if n,m ≥ N , then dY (f(xn), f(xm)) < ε. This means
that {f(xn)} is Cauchy in Y .

3) Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed linear spaces. Let T : X → Y
be linear. We say that T is bounded is

sup
‖x‖X≤1

{‖ T (x) ‖Y } <∞.

In this case, we write

‖ T ‖= sup
‖x‖X≤1

{‖ T (x) ‖Y }.

Otherwise, we say that T is unbounded.

a) Prove that the following are equivalent

i) T is continuous.

ii) T is continuous at 0.

iii) T is bounded.

Solution

i)⇒ ii) is immediate.

ii)⇒ iii)

Assume that T is continuous at 0. Let ε = 1. Then there exists a δ > 0
such that if ‖ x−0 ‖=‖ x ‖≤ δ then ‖ T (x)−T (0) ‖=‖ T (x) ‖≤ ε = 1.
(We can use ≤ δ since once we find a δ1 that works in the definition of
continuity δ = δ1

2
also works.)
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Now assume that ‖ x ‖≤ 1 and that x 6= 0. Then

w =
δ

‖ x ‖
x

has norm δ, so that
‖ T (w) ‖≤ 1

But ‖ T (w) ‖=‖ T ( δ
‖x‖x ‖) = δ

‖x‖ ‖ T (x) ‖, so that

δ

‖ x ‖
‖ T (x) ‖≤ 1.

This shows that

‖ T (x) ‖≤ ‖ x ‖
δ
≤ 1

δ

since ‖ x ‖≤ 1. It is also clear that 0 =‖ T (0) ‖≤ 1
δ
. It follows that

‖ T (x) ‖≤ 1
δ

whenever ‖ x ‖≤ 1. We have shown that ‖ T ‖≤ 1
δ

and
hence that T is bounded.

iii)⇒ i)

Observe that if T is bounded, then for any w ∈ X with w 6= 0 we have
that 1

‖w‖w has norm 1. It follows that

‖ T (
1

‖ w ‖
w) ‖= 1

‖ w ‖
‖ T (w) ‖≤‖ T ‖

From this we get that ‖ T (w) ‖≤‖ T ‖‖ w ‖. In fact, since T (0) = 0,
we get that if T is bounded, then

‖ T (w) ‖≤‖ T ‖‖ w ‖ .

If T (w) = 0 for all w, then T is clearly continuous. Assume that T 6= 0.
Then ‖ T ‖> 0. Given ε > 0, let δ = ε

‖T‖ . If ‖ x− y ‖< δ, then

‖ T (x)− T (y) ‖ = ‖ T (x− y) ‖
≤ ‖ T ‖‖ x− y ‖
< ‖ T ‖ (

ε

‖ T ‖
)

= ε

This shows that T is actually unifromly continuous on X.
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b) Assume that L : Rn → Rn is linear and that L is represented by the
matrix A. We let ‖ A ‖=‖ L ‖.

i) Assume that

D =


d1

d2
d3

. . .

dn


is a diagonal matix. Show that ‖ D ‖= max

i=1,···,n
{| di |}.

Solution

Assume that | dk |= max
i=1,···,n

{| di |}. Let x = (x1, x2, · · · , xn) ∈ Rn

with ‖ x ‖≤ 1. Then

‖ D(x) ‖ = ‖ (d1x1, d2x2, · · · , dnxn) ‖
=

√
(d1x1)2 + (d2x2)2 + · · ·+ (dnxn)2

≤
√

(dkx1)2 + (dkx2)2 + · · ·+ (dkxn)2

= | dk |
√
x21 + x22 + · · ·+ x2n

≤ | dk |

Hence ‖ D ‖≤ dk. However, If x = (0, 0, · · · , 0, 1, 0, · · · , 0) where
the 1 is in the k-th spot, then D(x) = (0, 0, · · · , 0, dk, 0, · · · , 0) so
‖ D(x) ‖=| dk |. This shows that ‖ D ‖=| dk |.

ii) Show that if

D =


d1

d2
d3

. . .

dn


is a diagonal matix, then

sup
‖x‖≤1

{|< Dx, x >|} = max
i=1,···,n

{| di |}.
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Solution

Assume that | dk |= max
i=1,···,n

{| di |}. Observe that if x = (x1, x2, · · · , xn) ∈
Rn with ‖ x ‖≤ 1 , then

|< Dx, x >| = | d1x21 + d2x
2
2 + · · ·+ dnx

2
n |

≤ | d1 | x21+ | d2 | x22 + · · ·+ | dn | x2n
≤ | dk | (x21 + x22 + · · ·+ x2n)

≤ | dk |

However, if x = (0, 0, · · · , 0, 1, 0, · · · , 0) where the 1 is in the k-th
spot, then |< Dx, x >|=| dk |. It follows that

sup
‖x‖≤1

{|< Dx, x >|} = max
i=1,···,n

{| di |}.

iii) Let U be an orthonormal n×n matrix. Show that if x ∈ Rn, then
‖ Ux ‖=‖ x ‖.
Solution

If U is orthonormal, then U tU = In, where U t is the transpose of
U and In is the n× n identity matrix.

It follows from basic linear algebra that for any x ∈ Rn

‖ Ux ‖2=< Ux,Ux >=< U tUx, x >=< x, x >=‖ x ‖2

iv) Assume that L : Rn → Rn is linear and that L is represented by
the matrix A. Show that ‖ L ‖=‖ A ‖=

√
| α | where α is the

largest eigenvalue of the matrix AtA.

Solution

Assume that ‖ x ‖≤ 1. Then

‖ Ax ‖2 = < Ax,Ax >

= < AtAx, x >

It follows that

‖ A ‖=
√

sup
‖x‖≤1

{|< AtAx, x >|}
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But AtA is symmetric and hence is diagonalizable via an ortho-
mormal matrix U . That is U tAtAU = D where D is the diagonal
matrix with the eigenvalues of ATA on its diagonal. Since ‖ x ‖= 1
if and only if ‖ Ux ‖= 1, we get

‖ A ‖ =
√

sup
‖x‖≤1

{|< AtAx, x >|}

=
√

sup
‖x‖≤1

{|< AtAUx,Ux >|}

=
√

sup
‖x‖≤1

{|< U tAtAUx, x >|}

=
√

sup
‖x‖≤1

{|< Dx, x >|}

=
√
| α |

where α is the largest eigenvalue of AtA.

v) Assume that L : R2 → R2 is represented by the matrix

A =

[
1 1
2 −1

]
Find ‖ A ‖. (You can use Maple or MATLAB if you like.)

Solution

First note that

AtA =

[
5 −1
−1 2

]
is symmetric and hence diagonalizable. To find the eigenvalues we
evaluate

det

[
5− λ −1
−1 2− λ

]
to get the characteristic polynomial λ2− 7λ+ 9. The roots of this
polynomial are λ = 7±

√
13

2
. Since 7+

√
13

2
is the largest eigenvalue,

we get that

‖ A ‖=

√
7 +
√

13

2
.
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4) Let x0 ∈ [0, 1]. Define Tx0 : C[0, 1]→ R by

Tx0(f) = f(x0)

a) Show that Tx0 is linear.

Solution

For any scalars α, β ∈ R and f, g ∈ C[0, 1], we have

Tx0(αf + βg) = (αf + βg)(x0)

= (αf)(x0) + (βg)(x0)

= αf(x0) + βg(x0)

= αTx0(f) + βTx0(g)

so Tx0 is linear.

b) Show that as a map from (C[0, 1], ‖ · ‖∞) → R, Tx0 is bounded
with ‖ Tx0 ‖= 1.

Solution

Assume that ‖ f ‖∞≤ 1. Then | Tx0(f) |=| f(x0) |≤‖ f ‖∞≤ 1.
Therefore, ‖ Tx0 ‖≤ 1.

However, if g(x) = 1 for all x ∈ [0, 1], then ‖ g ‖∞= 1 and
Tx0(g) = g(x0) = 1, so ‖ Tx0 ‖= 1.

c) Show that as a map from (C[0, 1], ‖ · ‖1)→ R, T0 is unbounded.

Solution

Let fn(x) be defined as follows. On [0, 1
n
], f(x) = 2n − 2n2x.

On [ 1
n
, 1], f(x) = 0. Then it is easy to see that ‖ fn ‖1= 1 but

T0(fn) = fn(0) = 2n→∞. Hence T0 is unbounded.

5) Define T : C[0, 1]→ R by

T (f) =

∫ 1

0

xf(x)dx.

a) Show that T is linear.

Solution
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For any scalars α, β ∈ R and f, g ∈ C[0, 1], we have

T (αf + βg) =

∫ 1

0

(αf + βg)(x) dx

=

∫ 1

0

(αf)(x) + (βg)(x) dx

=

∫ 1

0

αf(x) dx+

∫ 1

0

βg(x) dx

= α

∫ 1

0

f(x) dx+ β

∫ 1

0

g(x) dx

= αT (f) + βT (g)

so T is linear.

b) Show that if ‖ f(x) ‖∞≤ 1, then | T (f) |≤ 1
2
.

Solution

Assume that ‖ f(x) ‖∞≤ 1,. Then

| T (f) | = |
∫ 1

0

xf(x) dx |

≤
∫ 1

0

| xf(x) | dx

≤
∫ 1

0

x ‖ f ‖∞ dx

≤
∫ 1

0

x dx

=
1

2

Therefore, ‖ T ‖≤ 1
2
.

c) Show that T (1) = 1
2

and hence that ‖ T ‖= 1
2
.

Solution

Let 1 denote the constant function with value 1 on [0, 1]. Then

T (1) =
∫ 1

0
x · 1 dx =

∫ 1

0
x dx = 1

2
. Since ‖ 1 ‖∞= 1, we get that

‖ T ‖= 1
2
.

8



6 Let (X, d) and (Y, d) be metric spaces. We say that a function f :
(X, dX)→ (Y, dY ) is bounded if range(f) = {f(x) | x ∈ X} is bounded
in Y . (Note: This is diffferent than the notion of boundedness intro-
duced for linear maps between normed-linear spaces.)

Let

Cb(X, Y ) = {f : X → Y | f is continuous and bounded}

Define a function d∞ on Cb(X, Y )× Cb(X, Y ) by

d∞(f, g) = sup
x∈X
{dY (f(x), g(x))}

a) Show that d∞ determines a metric on Cb(X, Y ).

Solution

First observe that since f(x) and g(x) are both bounded on X, the set
f(X) ∪ g(X) is also bounded in Y . This shows that 0 ≤ d∞(f, g) =
sup
x∈X
{dY (f(x), g(x))} <∞. Moreover, it is clear that the only way that

0 = d∞(f, g) is if dY (f(x), g(x)) = 0 for all x ∈ X. This clearly happens
only if f = g. It is also clear from the symmetry of the definition that
d∞(f, g) = d∞(g, f).

To prove the triangle inequality, let f, g, h ∈ Cb(X, Y ) and let x ∈ X.

Then by the triangle inequality for dY , we get

dY (f(x), g(x)) ≤ dY (f(x), h(x))+dY (h(x), g(x)) ≤ d∞(f, h)+d∞(h, g).

Since the choice of x above was arbitrary, this shows that

d∞(f, g) = sup
x∈X
{dY (f(x), g(x))} ≤ d∞(f, h) + d∞(h, g).

Hence d∞ satisfies the three properties of a metric.

b) Show that if (Y, d) is complete, then so is (Cb(X, Y ), d∞).

Solution

Let {fn} be a Cauchy sequence in (Cb(X, Y ), d∞). Then if x0 ∈ X, and
if n,m ∈ N, we have

dY (fn(x0), fm(x0)) ≤ d∞(fn, fm).
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From this it is immediate that {fn(x0)} is Cauchy in Y and is therefore
convergent because Y is complete.

For each x ∈ X define

f0(x) = lim
n→∞

fn(x)

We claim that fn → f0 uniformly. To see this let ε > 0. Choose N
so that if n,m ≥ N , then d∞(fn, fm) < ε

2
. Now let n ≥ N and pick

x ∈ X.

Then fm(x) → f0(x) in Y . It follows by continuity (see Question 1
above) that

dY (fn(x), f0(x)) = lim
m→∞

dY (fn(x), fm(x))

But if m ≥ N , we have dY (fn(x), fm(x)) < ε
2
. It follows that

dY (fn(x), f0(x)) <
ε

2

and hence that
d∞(fn, fm) ≤ ε

2
< ε.

We have just shown that fn → f uniformly on X. Since each fn is
continuous, so is its uniform limit f0. To see that f0 is also bounded, we
note that we can find an N such that for each m > N , d∞(fN , fm) ≤ 1.
Since fN(X) is bounded, there is an y0 and a M such that fN(X) ⊆
B(y0,M). Now for each x ∈ X, we have

dY (y0, f0(x)) ≤ dY (y(0), fN(x)) + dY (fN(x), f0(x))

= dY (y(0), fN(x)) + lim
m→∞

dY (fN(x), fm(x))

≤M + 1

since dY (fN(x), fm(x)) ≤ 1 for each x ∈ X.

The final observation is that uniform convergence is equivalent to con-
vergence in the given metric. Hence fn → f0 in d∞ and (Cb(X, Y ), d∞)
is complete.
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7) Let f : R→ R. Let

D(f) = {x ∈ R | f(x) is discontinuous at x}.

For each n ∈ N, letDn = {x ∈ R | for every δ > 0, there exists y, z with

| x− y |< δ, | x− z |< δ but | f(y)− f(z) |≥ 1
n
}.

a) Show that for each n ∈ N, Dn is closed.

Solution

Let {xk} be a sequence in Dn with xk → x0. Let δ > 0. Then there
exists a k0 such that xk0 ∈ B(x0, δ). Let d = δ− | x0 − xk0 |> 0.
Since xk0 ∈ Dn, there exists y, z ∈ B(xk0 , d) with | f(y) − f(x) |≥ 1

n
.

However, B(xk0 , d) ⊆ B(x0, δ) so y, z ∈ B(x0, δ) and hence x0 ∈ Dn.
This shows that Dn is closed.

b) A subset A of a metric space is said to be an Fσ set if A =
∞⋃
n=1

Fn where

each Fn is closed. Show that D(f) is an Fσ set by showing that

D(f) =
∞⋃
n=1

Dn.

Solution

First assume that f(x) is discontinuous at x0. Then there exists an
ε0 such that for each δ > 0 there exists a y with | x0 − y |< δ but
| f(x0 − f(y) |≥ ε0. If we choose n large enough so that 1

n
< ε0, then

with x0 acting as the z, we see that x0 ∈ Dn. Hence D(f) ⊆
∞⋃
n=1

Dn

Now suppose that x0 ∈ Dn. Let ε0 = 1
2n

. Given δ > 0 we get y, z ∈
B(x0, δ) with | f(y)−f(z) |≥ 1

n
. But then the triangle inequality shows

that either | f(y)−f(x0) |≥ 1
2n

= ε0 or | f(x0)−f(z) |≥ 1
2n

= ε0. Hence
for each δ > 0 there exists a w ∈ B(x0, δ) such that | f(y)−f(x0) |≥ ε0.

This shows that x0 ∈ D(f) and hence that D(f) =
∞⋃
n=1

Dn. Since each

Dn is closed, D(f) is an Fσ set.
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