PMATH 351 Assignment 3 Solutions

1 a) Let (X, d) be a metric space. Let $x_0 \in X$ be fixed. Define $F_{x_0} : X \to \mathbb{R}$ by

$$F_{x_0}(x) = d(x_0, x)$$

Show that F_{x_0} is continuous.

Solution

Observe that if $x, y, z \in X$, then the triangle inequality shows that $d(x, z) \leq d(x, y) + d(y, z) = d(x, y) + d(z, y)$ and hence that

$$d(x,z) - d(x,y) \le d(z,y)$$

A similar calculation shows that

$$d(x,y) - d(x,z) \le d(z,y)$$

so we have

$$\mid d(x,z) - d(x,y) \mid \leq d(z,y)$$

Let $x_0 \in X$ be fixed. Let $y \in X$ and let $\epsilon > 0$. If $d(z, y) < \epsilon$, then

$$|F_{x_0}(z) - F_{x_0}(y)| = |d(x_0, z) - d(x_0, y)| \le d(z, y) < \epsilon$$

Hence F_{x_0} is (uniformly) continuous on X.

b) Let $(X, \|\cdot\|)$ be a normed linear space. $F: X \to \mathbb{R}$ by

$$F(x) = \parallel x \parallel$$

Show that F is continuous.

Solution

Since d(0, x) = ||x||, it is easy to see that $F(x) = F_0(x)$ in the notation above and is therefore continuous.

2) A function $f : (X, d_X) \to (Y, d_Y)$ is said to be uniformly continuous if for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $d_X(x_1, x_2) < \delta$, then $d_Y(f(x_1), f(x_2)) < \epsilon$.

Let $f: (X, d_X) \to (Y, d_Y)$ be uniformly continuous. Show that if $\{x_n\}$ is Cauchy in X, then $\{f(x_n)\}$ is Cauchy in Y.

Solution

Let $\{x_n\}$ be Cauchy in X and let $\epsilon > 0$. Then there exists a $\delta > 0$ such that if $d_X(u, w) < \delta$, then $d_Y(f(u), f(w)) < \epsilon$. But as $\{x_n\}$ is Cauchy in X, we can find an N so that if $n, m \ge N$, then $d_X(x_n, x_m) < \delta$. It then follows that if $n, m \ge N$, then $d_Y(f(x_n), f(x_m)) < \epsilon$. This means that $\{f(x_n)\}$ is Cauchy in Y.

3) Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed linear spaces. Let $T: X \to Y$ be linear. We say that T is bounded is

$$\sup_{x \parallel_X \le 1} \{ \parallel T(x) \parallel_Y \} < \infty.$$

In this case, we write

$$|| T || = \sup_{||x||_X \le 1} \{|| T(x) ||_Y \}.$$

Otherwise, we say that T is unbounded.

 $\|$

a) Prove that the following are equivalent

- i) T is continuous.
- ii) T is continuous at 0.
- iii) T is bounded.

Solution

- $i) \Rightarrow ii$) is immediate.
- $ii) \Rightarrow iii)$

Assume that T is continuous at 0. Let $\epsilon = 1$. Then there exists a $\delta > 0$ such that if $||x-0|| = ||x|| \le \delta$ then $||T(x) - T(0)|| = ||T(x)|| \le \epsilon = 1$. (We can use $\le \delta$ since once we find a δ_1 that works in the definition of continuity $\delta = \frac{\delta_1}{2}$ also works.) Now assume that $|| x || \le 1$ and that $x \ne 0$. Then

$$w = \frac{\delta}{\parallel x \parallel} x$$

has norm δ , so that

$$\mid T(w) \parallel \le 1$$

But $|| T(w) || = || T(\frac{\delta}{||x||}x ||) = \frac{\delta}{||x||} || T(x) ||$, so that $\frac{\delta}{||x||} || T(x) || \le 1.$

This shows that

$$\mid T(x) \parallel \le \frac{\parallel x \parallel}{\delta} \le \frac{1}{\delta}$$

since $||x|| \le 1$. It is also clear that $0 = ||T(0)|| \le \frac{1}{\delta}$. It follows that $||T(x)|| \le \frac{1}{\delta}$ whenever $||x|| \le 1$. We have shown that $||T|| \le \frac{1}{\delta}$ and hence that T is bounded.

 $iii) \Rightarrow i$

Observe that if T is bounded, then for any $w \in X$ with $w \neq 0$ we have that $\frac{1}{\|w\|}w$ has norm 1. It follows that

$$|| T(\frac{1}{|| w ||}w) || = \frac{1}{|| w ||} || T(w) || \le || T ||$$

From this we get that $|| T(w) || \le || T || || w ||$. In fact, since T(0) = 0, we get that if T is bounded, then

$$|T(w)| \leq ||T|| ||w||.$$

If T(w) = 0 for all w, then T is clearly continuous. Assume that $T \neq 0$. Then ||T|| > 0. Given $\epsilon > 0$, let $\delta = \frac{\epsilon}{\|T\|}$. If $||x - y|| < \delta$, then

$$\| T(x) - T(y) \| = \| T(x - y) \|$$

$$\leq \| T \| \| x - y \|$$

$$< \| T \| (\frac{\epsilon}{\| T \|})$$

$$= \epsilon$$

This shows that T is actually uniformly continuous on X.

- **b)** Assume that $L : \mathbb{R}^n \to \mathbb{R}^n$ is linear and that L is represented by the matrix A. We let ||A|| = ||L||.
 - i) Assume that

$$D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & d_3 & & \\ & & & \ddots & \\ & & & & d_n \end{bmatrix}$$

is a diagonal matix. Show that $|| D || = \max_{i=1,\dots,n} \{| d_i |\}.$

Solution

Assume that $|d_k| = \max_{i=1,\dots,n} \{|d_i|\}$. Let $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ with $||x|| \le 1$. Then

$$\| D(x) \| = \| (d_1 x_1, d_2 x_2, \cdots, d_n x_n) \|$$

= $\sqrt{(d_1 x_1)^2 + (d_2 x_2)^2 + \cdots + (d_n x_n)^2}$
 $\leq \sqrt{(d_k x_1)^2 + (d_k x_2)^2 + \cdots + (d_k x_n)^2}$
= $| d_k | \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$
 $\leq | d_k |$

Hence $|| D || \leq d_k$. However, If $x = (0, 0, \dots, 0, 1, 0, \dots, 0)$ where the 1 is in the k-th spot, then $D(x) = (0, 0, \dots, 0, d_k, 0, \dots, 0)$ so $|| D(x) || = | d_k |$. This shows that $|| D || = | d_k |$.

ii) Show that if

$$D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & d_3 & & \\ & & & \ddots & \\ & & & & d_n \end{bmatrix}$$

is a diagonal matix, then

$$\sup_{\|x\| \le 1} \{ |< Dx, x > | \} = \max_{i=1,\dots,n} \{ |d_i| \}.$$

Solution

Assume that $|d_k| = \max_{i=1,\dots,n} \{|d_i|\}$. Observe that if $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ with $||x|| \le 1$, then

$$|\langle Dx, x \rangle| = |d_1x_1^2 + d_2x_2^2 + \dots + d_nx_n^2|$$

$$\leq |d_1|x_1^2 + |d_2|x_2^2 + \dots + |d_n|x_n^2|$$

$$\leq |d_k|(x_1^2 + x_2^2 + \dots + x_n^2)$$

$$\leq |d_k|$$

However, if $x = (0, 0, \dots, 0, 1, 0, \dots, 0)$ where the 1 is in the k-th spot, then $|\langle Dx, x \rangle| = |d_k|$. It follows that

$$\sup_{\|x\| \le 1} \{ |< Dx, x > | \} = \max_{i=1,\dots,n} \{ |d_i| \}.$$

iii) Let U be an orthonormal $n \times n$ matrix. Show that if $x \in \mathbb{R}^n$, then || Ux || = || x ||.

Solution

If U is orthonormal, then $U^t U = I_n$, where U^t is the transpose of U and I_n is the $n \times n$ identity matrix.

It follows from basic linear algebra that for any $x \in \mathbb{R}^n$

$$\parallel Ux \parallel^2 = < Ux, Ux > = < U^t Ux, x > = < x, x > = \parallel x \parallel^2$$

iv) Assume that $L : \mathbb{R}^n \to \mathbb{R}^n$ is linear and that L is represented by the matrix A. Show that $|| L || = || A || = \sqrt{|\alpha|}$ where α is the largest eigenvalue of the matrix $A^t A$.

Solution

Assume that $||x|| \leq 1$. Then

$$|| Ax ||^2 = \langle Ax, Ax \rangle$$

= $\langle A^t Ax, x \rangle$

It follows that

$$|| A || = \sqrt{\sup_{||x|| \le 1} \{| < A^t A x, x > |\}}$$

But $A^t A$ is symmetric and hence is diagonalizable via an orthomormal matrix U. That is $U^t A^t A U = D$ where D is the diagonal matrix with the eigenvalues of $A^T A$ on its diagonal. Since ||x|| = 1if and only if ||Ux|| = 1, we get

$$\|A\| = \sqrt{\sup_{\|x\| \le 1} \{| < A^t A x, x > |\}}$$

$$= \sqrt{\sup_{\|x\| \le 1} \{| < A^t A U x, U x > |\}}$$

$$= \sqrt{\sup_{\|x\| \le 1} \{| < U^t A^t A U x, x > |\}}$$

$$= \sqrt{\sup_{\|x\| \le 1} \{| < D x, x > |\}}$$

$$= \sqrt{|\alpha|}$$

where α is the largest eigenvalue of $A^t A$.

v) Assume that $L: \mathbb{R}^2 \to \mathbb{R}^2$ is represented by the matrix

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 2 & -1 \end{array} \right]$$

Find || A ||. (You can use Maple or MATLAB if you like.) **Solution**

First note that

$$A^t A = \left[\begin{array}{cc} 5 & -1 \\ -1 & 2 \end{array} \right]$$

is symmetric and hence diagonalizable. To find the eigenvalues we evaluate

$$det \left[\begin{array}{cc} 5-\lambda & -1\\ -1 & 2-\lambda \end{array} \right]$$

to get the characteristic polynomial $\lambda^2 - 7\lambda + 9$. The roots of this polynomial are $\lambda = \frac{7 \pm \sqrt{13}}{2}$. Since $\frac{7 + \sqrt{13}}{2}$ is the largest eigenvalue, we get that

$$\parallel A \parallel = \sqrt{\frac{7 + \sqrt{13}}{2}}$$

4) Let $x_0 \in [0, 1]$. Define $T_{x_0} : C[0, 1] \to \mathbb{R}$ by

$$T_{x_0}(f) = f(x_0)$$

a) Show that T_{x_0} is linear.

Solution

For any scalars $\alpha, \beta \in \mathbb{R}$ and $f, g \in C[0, 1]$, we have

$$T_{x_0}(\alpha f + \beta g) = (\alpha f + \beta g)(x_0)$$

= $(\alpha f)(x_0) + (\beta g)(x_0)$
= $\alpha f(x_0) + \beta g(x_0)$
= $\alpha T_{x_0}(f) + \beta T_{x_0}(g)$

so T_{x_0} is linear.

b) Show that as a map from $(C[0,1], \|\cdot\|_{\infty}) \to \mathbb{R}, T_{x_0}$ is bounded with $\|T_{x_0}\| = 1$.

Solution

Assume that $|| f ||_{\infty} \leq 1$. Then $| T_{x_0}(f) |=| f(x_0) |\leq || f ||_{\infty} \leq 1$. Therefore, $|| T_{x_0} || \leq 1$.

However, if g(x) = 1 for all $x \in [0, 1]$, then $||g||_{\infty} = 1$ and $T_{x_0}(g) = g(x_0) = 1$, so $||T_{x_0}|| = 1$.

c) Show that as a map from $(C[0,1], \|\cdot\|_1) \to \mathbb{R}, T_0$ is unbounded. Solution

Let $f_n(x)$ be defined as follows. On $[0, \frac{1}{n}]$, $f(x) = 2n - 2n^2 x$. On $[\frac{1}{n}, 1]$, f(x) = 0. Then it is easy to see that $|| f_n ||_1 = 1$ but $T_0(f_n) = f_n(0) = 2n \to \infty$. Hence T_0 is unbounded.

5) Define $T: C[0,1] \to \mathbb{R}$ by

$$T(f) = \int_0^1 x f(x) dx.$$

a) Show that T is linear. Solution For any scalars $\alpha, \beta \in \mathbb{R}$ and $f, g \in C[0, 1]$, we have

$$T(\alpha f + \beta g) = \int_0^1 (\alpha f + \beta g)(x) dx$$

=
$$\int_0^1 (\alpha f)(x) + (\beta g)(x) dx$$

=
$$\int_0^1 \alpha f(x) dx + \int_0^1 \beta g(x) dx$$

=
$$\alpha \int_0^1 f(x) dx + \beta \int_0^1 g(x) dx$$

=
$$\alpha T(f) + \beta T(g)$$

so T is linear.

b) Show that if $|| f(x) ||_{\infty} \le 1$, then $| T(f) | \le \frac{1}{2}$. Solution

Assume that $|| f(x) ||_{\infty} \leq 1$,. Then

$$|T(f)| = |\int_0^1 xf(x) dx|$$

$$\leq \int_0^1 |xf(x)| dx$$

$$\leq \int_0^1 x ||f||_{\infty} dx$$

$$\leq \int_0^1 x dx$$

$$= \frac{1}{2}$$

Therefore, $\parallel T \parallel \leq \frac{1}{2}$.

c) Show that $T(1) = \frac{1}{2}$ and hence that $|| T || = \frac{1}{2}$.

Solution

Let 1 denote the constant function with value 1 on [0, 1]. Then $T(1) = \int_0^1 x \cdot 1 \, dx = \int_0^1 x \, dx = \frac{1}{2}$. Since $|| 1 ||_{\infty} = 1$, we get that $|| T || = \frac{1}{2}$.

6 Let (X, d) and (Y, d) be metric spaces. We say that a function f: $(X, d_X) \to (Y, d_Y)$ is bounded if $range(f) = \{f(x) \mid x \in X\}$ is bounded in Y. (Note: This is different than the notion of boundedness introduced for linear maps between normed-linear spaces.)

Let

 $C_b(X,Y) = \{f : X \to Y \mid f \text{ is continuous and bounded}\}\$

Define a function d_{∞} on $C_b(X, Y) \times C_b(X, Y)$ by

$$d_{\infty}(f,g) = \sup_{x \in X} \{ d_Y(f(x),g(x)) \}$$

a) Show that d_{∞} determines a metric on $C_b(X, Y)$.

Solution

First observe that since f(x) and g(x) are both bounded on X, the set $f(X) \cup g(X)$ is also bounded in Y. This shows that $0 \leq d_{\infty}(f,g) = \sup_{x \in X} \{d_Y(f(x), g(x))\} < \infty$. Moreover, it is clear that the only way that $0 = d_{\infty}(f,g)$ is if $d_Y(f(x), g(x)) = 0$ for all $x \in X$. This clearly happens only if f = g. It is also clear from the symmetry of the definition that $d_{\infty}(f,g) = d_{\infty}(g,f)$.

To prove the triangle inequality, let $f, g, h \in C_b(X, Y)$ and let $x \in X$. Then by the triangle inequality for d_Y , we get

$$d_Y(f(x), g(x)) \le d_Y(f(x), h(x)) + d_Y(h(x), g(x)) \le d_\infty(f, h) + d_\infty(h, g).$$

Since the choice of x above was arbitrary, this shows that

$$d_{\infty}(f,g) = \sup_{x \in X} \{ d_Y(f(x), g(x)) \} \le d_{\infty}(f,h) + d_{\infty}(h,g).$$

Hence d_{∞} satisfies the three properties of a metric.

b) Show that if (Y, d) is complete, then so is $(C_b(X, Y), d_\infty)$.

Solution

Let $\{f_n\}$ be a Cauchy sequence in $(C_b(X, Y), d_\infty)$. Then if $x_0 \in X$, and if $n, m \in \mathbb{N}$, we have

$$d_Y(f_n(x_0), f_m(x_0)) \le d_\infty(f_n, f_m).$$

From this it is immediate that $\{f_n(x_0)\}$ is Cauchy in Y and is therefore convergent because Y is complete.

For each $x \in X$ define

$$f_0(x) = \lim_{n \to \infty} f_n(x)$$

We claim that $f_n \to f_0$ uniformly. To see this let $\epsilon > 0$. Choose N so that if $n, m \ge N$, then $d_{\infty}(f_n, f_m) < \frac{\epsilon}{2}$. Now let $n \ge N$ and pick $x \in X$.

Then $f_m(x) \to f_0(x)$ in Y. It follows by continuity (see Question 1 above) that

$$d_Y(f_n(x), f_0(x)) = \lim_{m \to \infty} d_Y(f_n(x), f_m(x))$$

But if $m \geq N$, we have $d_Y(f_n(x), f_m(x)) < \frac{\epsilon}{2}$. It follows that

$$d_Y(f_n(x), f_0(x)) < \frac{\epsilon}{2}$$

and hence that

$$d_{\infty}(f_n, f_m) \le \frac{\epsilon}{2} < \epsilon.$$

We have just shown that $f_n \to f$ uniformly on X. Since each f_n is continuous, so is its uniform limit f_0 . To see that f_0 is also bounded, we note that we can find an N such that for each m > N, $d_{\infty}(f_N, f_m) \leq 1$. Since $f_N(X)$ is bounded, there is an y_0 and a M such that $f_N(X) \subseteq B(y_0, M)$. Now for each $x \in X$, we have

$$d_Y(y_0, f_0(x)) \leq d_Y(y_0, f_N(x)) + d_Y(f_N(x), f_0(x)) = d_Y(y_0, f_N(x)) + \lim_{m \to \infty} d_Y(f_N(x), f_m(x)) < M + 1$$

since $d_Y(f_N(x), f_m(x)) \leq 1$ for each $x \in X$.

The final observation is that uniform convergence is equivalent to convergence in the given metric. Hence $f_n \to f_0$ in d_{∞} and $(C_b(X, Y), d_{\infty})$ is complete.

7) Let $f : \mathbb{R} \to \mathbb{R}$. Let

 $D(f) = \{ x \in \mathbb{R} \mid f(x) \text{ is discontinuous at } x \}.$

For each $n \in \mathbb{N}$, let $D_n = \{x \in \mathbb{R} \mid \text{ for every } \delta > 0, \text{ there exists } y, z \text{ with} | x - y | < \delta, | x - z | < \delta \text{ but } | f(y) - f(z) | \ge \frac{1}{n} \}.$

a) Show that for each $n \in \mathbb{N}$, D_n is closed.

Solution

Let $\{x_k\}$ be a sequence in D_n with $x_k \to x_0$. Let $\delta > 0$. Then there exists a k_0 such that $x_{k_0} \in B(x_0, \delta)$. Let $d = \delta - |x_0 - x_{k_0}| > 0$. Since $x_{k_0} \in D_n$, there exists $y, z \in B(x_{k_0}, d)$ with $|f(y) - f(x)| \ge \frac{1}{n}$. However, $B(x_{k_0}, d) \subseteq B(x_0, \delta)$ so $y, z \in B(x_0, \delta)$ and hence $x_0 \in D_n$. This shows that D_n is closed.

b) A subset A of a metric space is said to be an F_{σ} set if $A = \bigcup_{n=1}^{\infty} F_n$ where each F_n is closed. Show that D(f) is an F_{σ} set by showing that

$$D(f) = \bigcup_{n=1}^{\infty} D_n$$

Solution

First assume that f(x) is discontinuous at x_0 . Then there exists an ϵ_0 such that for each $\delta > 0$ there exists a y with $|x_0 - y| < \delta$ but $|f(x_0 - f(y)| \ge \epsilon_0$. If we choose n large enough so that $\frac{1}{n} < \epsilon_0$, then with x_0 acting as the z, we see that $x_0 \in D_n$. Hence $D(f) \subseteq \bigcup_{n=1}^{\infty} D_n$

Now suppose that $x_0 \in D_n$. Let $\epsilon_0 = \frac{1}{2n}$. Given $\delta > 0$ we get $y, z \in B(x_0, \delta)$ with $|f(y) - f(z)| \ge \frac{1}{n}$. But then the triangle inequality shows that either $|f(y) - f(x_0)| \ge \frac{1}{2n} = \epsilon_0$ or $|f(x_0) - f(z)| \ge \frac{1}{2n} = \epsilon_0$. Hence for each $\delta > 0$ there exists a $w \in B(x_0, \delta)$ such that $|f(y) - f(x_0)| \ge \epsilon_0$. This shows that $x_0 \in D(f)$ and hence that $D(f) = \bigcup_{n=1}^{\infty} D_n$. Since each D_n is closed, D(f) is an F_{σ} set.