
Theorem [Banach Contractive Mapping Theorem]
Let (X, d) be complete metrric space. Let 0 < k < 1. Let Γ : X → X

be such that d(Γ(x),Γ(y)) ≤ kd(x, y) for every x, y ∈ X. Then there exists
a unique x0 ∈ X such that Γ(x0) = x0.

Proof
Let x1 ∈ X. Then let x2 = Γ(x1), x3 = Γ(x2), and proceed recursively by

defining
xn+1 = Γ(xn).

Note that
d(x3, x2) = d(Γ(x2),Γ(x1) ≤ kd(x2, x1).

Similarly,

d(x4, x3) = d(Γ(x3),Γ(x3) ≤ kd(x3, x2) ≤ k2d(x2, x1).

In fact, we can proceed inductively to show that

d(xn+1, xn) =≤ kn−1d(x1, x2).

From this it follows that if m < n, we have

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · · d(xn+1, xn)

≤ km−2d(x2, x1) + km−1d(x2, x1) + · · ·+ kn−1d(x2, x1)

= kn−1d(x2, x1)[k
m−n−1 + km−n−2 + · · ·+ k + 1]

=
kn−1d(x2, x1)

1− k

Since kn → 0, it follows that {xn} is Cauchy. As (X, d) is complete {xn}
converges to some x0 ∈ X.

Now, It is clear that Γ is continuous. As such we have that Γ(xn)→ Γ(x0).
But Γ(xn) = xn+1 → x0, so it follows that

Γ(x0) = x0.

Finally assume that y0 also satisfies Γ(y0) = y0. Then

d(x0, y0) = d(Γ(x0),Γ(y0)) ≤ kd(x0, y0).

As 0 < k < 1, this implies that [d(x0, y0) = 0 and hence that x0 = y0.
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Theorem [BaireCategory Theorem]
Let (X, d) be complete metrric space. Let {Un} be a sequence of open

dense sets. Then
∞⋂
n=1

Un is dense in X.

Proof
Let W be open and non-empty. Then there exists an x1 ∈ X and 0 <

r1 < 1 such that
B(x1, r1) ⊆ B[x1, r1] ⊆ W ∩ U1.

Next we can find x2 ∈ X and 0 < r2 <
1
2

such that

B(x2, r2) ⊆ B[x2, r2] ⊆ B(x1, r1) ∩ U2.

We can then proceed recursively to find sequences {xn} ⊆ X and {rn} ⊂
R with 0 < rn <

1
n
, and

B(xn+1, rn+1) ⊆ B[xn+1, rn+1] ⊆ B(xn, rn) ∩ Un+1.

Since rn → 0 and B[xn+1, rn+1] ⊆ B[xn, rn], Cantor’s Intersection Theo-
rem implies that there exists an

x0 ∈
∞⋂
n=1

B[xn, rn.]

But then x0 ∈ B[x1, r1] ⊆ W and x0 ∈ B[xn, rn] ⊆ Un for each n ∈ N. This
shows that

x0 ∈ W ∩ (
∞⋂
n=1

Un).
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Note: If asked to prove the Weierstrass Approximation Theorem you can
give the proof as follows:

Theorem [Weierstrass Approximation Theorem. ]
Let f ∈ C[a, b]. Then there exists a sequence pn(x) of polynomials such

that pn(x)→ f(x) uniformly on [a, b]

Proof
First we note that withoot loss of generality we can assume that [a, b] =

[0, 1] and that f(0) = 0 = f(1). As such we may extend f(x) to a uniformly
continuous function on R by defining f(x) = 0 if x ∈ (−∞, 0] ∪ [1,∞).

Now let Qn(x) = cn(1− x2)n where cn is chosen so that∫ 1

−1
Qn(x)dx = 1.

Using the MeanValue Theoerem we can show that

(1− x2)n ≥ 1− nx2

for all x ∈ [0, 1]. As such∫ 1

−1
(1− x2)ndx = 2

∫ 1

0

(1− x2)ndx

≥ 2

∫ 1√
n

0

1− nx2dx

=
4

3
√
n

>
1√
n

and hence we have
cn <

√
n.

Now if 0 < δ < 1, then for each x ∈ [−1, δ] ∪ [δ, 1] we have

cn(1− x2)n ≤
√
n(1− δ2)n.
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Let

pn(x) =

∫ 1

−1
f(x+ t)Qn(t)dt

=

∫ 1−x

−x
f(x+ t)Qn(t)dt

=

∫ 1

−1
f(u)Qn(u− x)du

From Leibnez’s rule we have that

d2n+1

dx2n+1
(pn(x)) =

∫ 1

−1
f(u)

∂2n+1

∂x2n+1
Qn(u− x)du = 0.

It follows that pn is a polynomial of degree 2n+ 1 or less.
Let ε > 0.Let M =‖ f ‖∞. Choose 0 < δ < 1 so that if | x− y |< δ, then

| f(x)− f(y) |< ε
2
. Now∫ 1

−1
Qn(t)dt = 1⇒ f(x) =

∫ 1

−1
f(x)Qn(t)dt = 1.

Moreover, if x ∈ [0, 1],

| pn(x)− f(x) | = |
∫ 1

−1
[f(x+ t)− f(x)]Qn(t)dt |

≤
∫ 1

−1
| f(x+ t)− f(x) | Qn(t)dt

=

∫ delta

−1
| f(x+ t)− f(x) | Qn(t)dt+

∫ δ

−δ
| f(x+ t)− f(x) | Qn(t)dt+

∫ 1

δ

| f(x+ t)− f(x) | Qn(t)dt

≤ 2M
√
n(1− δ2)n +

ε

2
+ 2M

√
n(1− δ2)n

= 4M
√
n(1− δ2)n +

ε

2

Hence if we choose n large enough so that 4M
√
n(1− δ2)n < ε

2
, then

‖ pn − f ‖∞< ε.
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In the proof of the next theorem you may assume 1) the WAT, 2) the
Stone-Weierstrass Theorem: Lattice version and that if A is a subsalgebra
of C(x), then so is Ā.

Theorem [Stone-Weierstrass Theorem: Subalgebra version]
Assume that (X, d) is a compact metric space. Let A be a subalgebra of

C(X) for which

1) 1 in A,

2) A is point separating.

Then Ā = C(X).

Proof
Note that Ā is also a subalgebra satisfying 1) and 2). Let f ∈ Ā. Since f

is bounded, there exists an M > 0 such that f(x) ∈ [−M,M ] for all x ∈ X.
Now let ε > 0. Then we can find a polynomial p(t) = a0 + a1t+ · · ·+ ant

n so
that

| p(t)− | t ||< ε

for all t ∈ [−M,M ]. It follows that for each x ∈ X we have

| p(f(x))− | f(x) ||< ε.

As such if p ◦ f = a01 + a1f + · · · anfn, then p ◦ f ∈ Ā and

‖ p ◦ f− | f |‖∞< ε.

Since ε was arbitrary andĀ is closed, this shows that | f |∈ Ā. Since

f ∧ g =
f + g+ | f − g |

2

we have that Ā satisfies the conditions of the SWT Lattice version, and hence
that Ā = C(X).
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