
PMATH 352, Spring 2011

Solution of Homework #1

Problem 1. Let V ⊂ C be open and z ∈ C.
(a) If f : V → C is C-differentiable at z, show that f is continuous at z.
(b) Prove the product rule: if f, g : V → C are each C-differentiable at z, then so too is fg with

(fg)′(z) = f ′(z)g(z) + f(z)g′(z).

Solution.

(a) We have for each z ∈ V

lim
w 7→z

∣∣∣∣f(w)− f(z)

w − z
− f ′(z)

∣∣∣∣ = 0.

By usual limit rules and the continuity of w 7→ |w| we have

lim
w 7→z
|f(w)− f(z)| =

∣∣∣ lim
w 7→z

(f(w)− f(z)) + 0
∣∣∣

=
∣∣∣ lim
w 7→z

(f(w)− f(z)) + lim
w 7→z

f ′(z)(w − z)
∣∣∣

= lim
w 7→z

(∣∣∣∣f(w)− f(z)

w − z
− f ′(z)

∣∣∣∣ |w − z|)
= lim

w 7→z

∣∣∣∣f(w)− f(z)

w − z
− f ′(z)

∣∣∣∣ lim
w 7→z
|w − z| = 0.

This implies limw−z f(w) = f(z).
Altenatively, use 2. (a) to obtain the estimate

|f(w)− f(z)| ≤ |a||w − z|+ |E(w − z)|
where the right-hand side goes to 0 as w → z.

(b) We have for z ∈ V and h 6= 0 such that z + h ∈ V ,

f(z + h)g(z + h)− f(z)g(z)

h

=
f(z + h)g(z + h)− f(z)g(z + h) + f(z)g(z + h)− f(z)g(z)

h

=
f(z + h)− f(z)

h
g(z + h) + f(z)

g(z + h)− g(z)

h
.

We take limit h → 0 and note that limh→0 g(z + h) = g(z) by (a), above, and use usual
limit rules, to obatain the desired result.

Problem 2. Let V ⊂ C be open and z ∈ C.

(a) Show that f : V → C is differentiable at z if and only if there is a ∈ C and a function
E : D(0, r)→ C (where r > 0 is such that D(z, r) ⊂ V ) such that

f(z + h) = f(z) + ah+ E(h) for h ∈ D(0, r), E(0) = 0 and lim
h→0

E(h)

h
= 0.

(b) Prove that for the “error” function E, in (a), above, that for any ε > 0 there is δ > 0 such
that for |h| < δ we have |E(h)| ≤ ε|h|.
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(c) Prove the chain rule: If f : V → C is differentiable at z, U is an open set containing f(z)
and g : U → C is C-differentiable at f(z), then the composition g ◦ f is C-differentiable at
z with

(g ◦ f)′(z) = g′
(
f(z)

)
g′(z).

(d) Let q : C\{0} → C be given by q(z) = 1
z . Show that q′(z) exists for each z 6= 0 and is equal

to − 1
z2

. Deduce from this, and from the differentiation rules above, the quotient rule: if
f, g : V → C are C-differentiable at z ∈ V and g(z) 6= 0, then f/g is C-differentiable at z
with (

f

g

)′
(z) =

f ′(z)g(z)− f(z)g′(z)

g(z)2
.

Solution.

(a) If f is C-differentiable at z, set a = f ′(z) and define E : D(0, r)→ C by

E(h) =

{
f(z+h)−f(z)

h − f ′(z) if h 6= 0

0 if h = 0
.

Then the desired result holds, by definition.
Conversely, if a, E are as in the question we obtain

f(z + h)− f(z)

h
= a+

E(h)

h
for h 6= 0.

Since limh→0
E(h)
h = 0 we see that limh→0

f(z+h)−f(z)
h exist and equals a.

(b) Since limh→0
E(h)
h = 0, given ε > 0 there is δ > 0 (we may assume δ ≤ r) so that

|E(h)|
|h|

< ε whenever 0 < |h| < δ.

Hence, using additionally the fact that E(0) = 0 we find

|E(h)| ≤ ε|h| whenever |h| < δ.

(c) Let E : D(0, r)→ C be the error function for f at z as promised by (a); and F : D(0, r′)→ C
the error function for g at f(z), as promised by (a). For suitably small h 6= 0 we have

g(f(z + h))− g(f(z)) = g
(
f(z) + f ′(z)h+ E(h)

)
− g(f(z)), by (a)

= g(f(z)) + g′(f(z))
(
f ′(z)h+ E(h)

)
+ F

(
f ′(z)h+ E(h)

)
− g(f(z)), by (a)

= g′(f(z))
(
f ′(z)h+ E(h)

)
+ F

(
f ′(z)h+ E(h)

)
.

Let ε > 0 be given. By (b), find δ′ ∈ (0, r′) for which |F (η)| ≤ ε
2|f ′(z)|+1 |η| for |η| < δ′.

Since limh→0E(h) = 0 (see proof of 1. (a),above) we have that limh→0

(
f ′(z)h+E(h)

)
= 0.

Hence there is δ ∈ (0, r) such that |f ′(z)h+E(h)| < δ′ for |h| < δ. Thus for 0 < |h| < δ we
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have∣∣∣∣g(f(z + h))− g(f(z))

h
− g′(f(z))f ′(z)

∣∣∣∣ =

∣∣∣∣∣g′(f(z))
E(h) + F

(
f ′(z)h+ E(h)

)
h

∣∣∣∣∣
≤ |g′(f(z))| |E(h)|

|h|
+

∣∣F (f ′(z)h+ E(h)
)∣∣

h

≤ |g′(f(z))| |E(h)|
|h|

+
ε

2|f ′(z)|+ 1

∣∣f ′(z)h+ E(h)
∣∣

|h|

≤
(
|g′(f(z))|+ 1

) |E(h)|
|h|

+
ε

2
.

If we find δ1 > 0 so that |E(h)|
|h| < ε

2
(
|g′(f(z))|+1

) whenever 0 < |h| < δ1. Then if 0 < |h| < δ1

we have ∣∣∣∣g(f(z + h))− g(f(z))

h
− g′(f(z))f ′(z)

∣∣∣∣ < ε.

(d) We have
1

z + h
− 1

z
=

−h
(z + h)z

.

Hence it follows that limh→0
1
h

(
1

z+h −
1
z

)
= − 1

z2
.

Using product rule and chain rule we obtain(
f

g

)′
= f ′

1

g
+ f

(
1

g

)′
=
f ′

g
− f g

′

g2
=
f ′g − fg′

g2
.

Problem 3. Define φ(z) = i
1− z
1 + z

for z 6= −1.

(a) Let λ(z) = (1 + iz)/(1− iz). Show that λ(φ(z)) = z, and that φ maps C \ {−1} one-to-one
and onto C \ {−i}.

(b) Show that φ maps the unit disk D = {z ∈ C : |z| < 1} one-to-one and onto the upper half
plane H = {z : im z > 0}. (Hint: consider z in polar forms)

Solution.

(a) If w = i(1− z)/(1 + z), then −iw(1 + z) = 1− z; so z = (1 + iw)/1− iw). Thus, the inverse
function of φ is λ. It follows that φ is one-to-one because it is determine by w. Also, every
z is in the range of λ. Thus, φ maps C \ {−1} one-to-one and onto C \ {−i}.

(b) Consider where a circle maps to. Let z = r cos θ + r sin θ. Compute

φ(z) =i
(1− r cos θ)− ir sin θ

1 + r cos θ) + ir sin θ
= i

(1− r cos θ)− ir sin θ

1 + r cos θ) + ir sin θ
· 1 + r cos θ)− ir sin θ

1 + r cos θ)− ir sin θ

=i
(1− r2 cos2 θ − r2 sin2 θ) + i(2r cos θ sin θ)

(1 + r cos θ)2 + r2 sin2 θ
=
−r sin 2θ + i(1− r2))

(1 + r cos θ)2 + r2 sin2 θ
.

Since the denominator is positive, this lies in the upper half plane if and only if r < 1. By
(a), the whole upper half plane is in the range of φ. So the unit disk must be mapped onto
H.
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Problem 4. Let A = {z ∈ C : 1
2 < |z| < 2}, and let f(z) = z + 1

z . Show that f(A) is the interior
of an ellipse. (Hint: consider the image of circles)

Solution. Let z = r cos θ + ir sin θ. Then

f(z) = (r + 1/r) cos θ + i(r − 1/r) sin θ,

lies on the curve x2/(r + 1/r)2 + y2/(r − 1/r)2 + 1, which is an ellipse. To find the foci, compute

c2 = (r + 1/r)2 − (r − 1/r)2 = 4.

So the foci are ±2. Another way to describe the ellipse is

{z||z − 2|+ |z + 2| = 2(r + 1/r)}.
When r = 1, we get f(cos θ + sin θ) = 2 cos θ which maps onto [−2, 2].

Now we see that the images of the circles of radius 1 < r < 2 are distinct ellipses with the same
foci. They coincide with the image of the circles of radius 1/r. The circle of radius 1 maps onto
the line segment [−2, 2]. Since r + 1/r is continuously monotone increasing on r ≥ 1, and takes
[1, 2) onto [4, 5), the image ellipses fill in the solid ellipse

f(A) = {z||z − 2|+ |z + 2| < 5}.
Problem 5.

Find all complex numbers z such that z8 + 16z4 + 256 = 0. Write your answers in the standard
form.

Solution. Let t = z4. Then t2 + 16t+ 256 = 0. Using the quadratic formula, we get

t =
−16±

√
256− 4 · 256

2
= −8± 8

√
3i = 16e2πi/3, 16e4πi/3.

Thus,

z4 = 16e2πi/3, or 16e4πi/3 =⇒ z = 2·eπi/6, 2·e2πi/3, 2·e7πi/6, 2·e5πi/3, 2·eπi/3, 2·e5πi/6, 2·e4πi/3, 2·e11πi/6,
and therefore

z = ±
√

3± i,±1±
√

3i.


