PMATH 352, Spring 2011

Solution of Homework $#1$

Problem 1. Let $V \subset \mathbb{C}$ be open and $z \in \mathbb{C}$.

(a) If $f: V \to \mathbb{C}$ is \mathbb{C} -differentiable at z, show that f is continuous at z.

(b) Prove the *product rule*: if $f, g: V \to \mathbb{C}$ are each \mathbb{C} -differentiable at z, then so too is fg with $(fg)'(z) = f'(z)g(z) + f(z)g'(z).$

SOLUTION.

(a) We have for each $z \in V$

$$
\lim_{w \mapsto z} \left| \frac{f(w) - f(z)}{w - z} - f'(z) \right| = 0.
$$

By usual limit rules and the continuity of $w \mapsto |w|$ we have

$$
\lim_{w \to z} |f(w) - f(z)| = \left| \lim_{w \to z} (f(w) - f(z)) + 0 \right|
$$

\n
$$
= \left| \lim_{w \to z} (f(w) - f(z)) + \lim_{w \to z} f'(z)(w - z) \right|
$$

\n
$$
= \lim_{w \to z} \left(\left| \frac{f(w) - f(z)}{w - z} - f'(z) \right| |w - z| \right)
$$

\n
$$
= \lim_{w \to z} \left| \frac{f(w) - f(z)}{w - z} - f'(z) \right| \lim_{w \to z} |w - z| = 0.
$$

This implies $\lim_{w-z} f(w) = f(z)$.

Altenatively, use 2. (a) to obtain the estimate

$$
|f(w) - f(z)| \le |a||w - z| + |E(w - z)|
$$

where the right-hand side goes to 0 as $w \rightarrow z$. (b) We have for $z \in V$ and $h \neq 0$ such that $z + h \in V$,

$$
\frac{f(z+h)g(z+h) - f(z)g(z)}{h} = \frac{f(z+h)g(z+h) - f(z)g(z+h) + f(z)g(z+h) - f(z)g(z)}{h}
$$

=
$$
\frac{f(z+h) - f(z)}{h}g(z+h) + f(z)\frac{g(z+h) - g(z)}{h}.
$$

We take limit $h \to 0$ and note that $\lim_{h\to 0} g(z+h) = g(z)$ by (a), above, and use usual limit rules, to obatain the desired result.

Problem 2. Let $V \subset \mathbb{C}$ be open and $z \in \mathbb{C}$.

(a) Show that $f: V \to \mathbb{C}$ is differentiable at z if and only if there is $a \in \mathbb{C}$ and a function $E: D(0,r) \to \mathbb{C}$ (where $r > 0$ is such that $D(z, r) \subset V$) such that

$$
f(z+h) = f(z) + ah + E(h)
$$
 for $h \in D(0,r)$, $E(0) = 0$ and $\lim_{h \to 0} \frac{E(h)}{h} = 0$.

(b) Prove that for the "error" function E, in (a), above, that for any $\epsilon > 0$ there is $\delta > 0$ such that for $|h| < \delta$ we have $|E(h)| \leq \epsilon |h|$.

(c) Prove the *chain rule*: If $f: V \to \mathbb{C}$ is differentiable at z, U is an open set containing $f(z)$ and $g: U \to \mathbb{C}$ is C-differentiable at $f(z)$, then the composition $g \circ f$ is C-differentiable at z with

$$
(g \circ f)'(z) = g'(f(z))g'(z).
$$

(d) Let $q: \mathbb{C}\backslash\{0\} \to \mathbb{C}$ be given by $q(z) = \frac{1}{z}$. Show that $q'(z)$ exists for each $z \neq 0$ and is equal to $-\frac{1}{z^2}$ $\frac{1}{z^2}$. Deduce from this, and from the differentiation rules above, the *quotient rule*: if $f, g : V \to \mathbb{C}$ are \mathbb{C} -differentiable at $z \in V$ and $g(z) \neq 0$, then f/g is \mathbb{C} -differentiable at z with

$$
\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{g(z)^2}.
$$

SOLUTION.

(a) If f is C-differentiable at z, set $a = f'(z)$ and define $E : D(0, r) \to \mathbb{C}$ by

$$
E(h) = \begin{cases} \frac{f(z+h) - f(z)}{h} - f'(z) & \text{if } h \neq 0\\ 0 & \text{if } h = 0 \end{cases}.
$$

Then the desired result holds, by definition.

Conversely, if a, E are as in the question we obtain

$$
\frac{f(z+h) - f(z)}{h} = a + \frac{E(h)}{h}
$$
for $h \neq 0$.

Since $\lim_{h\to 0} \frac{E(h)}{\frac{h}{h}} = 0$ we see that $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h}$ $\frac{h^{(n)}-f(z)}{h}$ exist and equals a. (b) Since $\lim_{h\to 0} \frac{E(h)}{h} = 0$, given $\epsilon > 0$ there is $\delta > 0$ (we may assume $\delta \le r$) so that

$$
\frac{|E(h)|}{|h|} < \epsilon \text{ whenever } 0 < |h| < \delta.
$$

Hence, using additionally the fact that $E(0) = 0$ we find

$$
|E(h)| \le \epsilon |h| \text{ whenever } |h| < \delta.
$$

(c) Let $E: D(0,r) \to \mathbb{C}$ be the error function for f at z as promised by (a); and $F: D(0,r') \to \mathbb{C}$ the error function for g at $f(z)$, as promised by (a). For suitably small $h \neq 0$ we have

$$
g(f(z+h)) - g(f(z)) = g(f(z) + f'(z)h + E(h)) - g(f(z)), \text{ by (a)}
$$

= $g(f(z)) + g'(f(z))(f'(z)h + E(h)) + F(f'(z)h + E(h)) - g(f(z)), \text{ by (a)}$
= $g'(f(z))(f'(z)h + E(h)) + F(f'(z)h + E(h)).$

Let $\epsilon > 0$ be given. By (b), find $\delta' \in (0, r')$ for which $|F(\eta)| \leq \frac{\epsilon}{2|f'(z)|+1} |\eta|$ for $|\eta| < \delta'$. Since $\lim_{h\to 0} E(h) = 0$ (see proof of 1. (a), above) we have that $\lim_{h\to 0} (f'(z)h + E(h)) = 0$. Hence there is $\delta \in (0, r)$ such that $|f'(z)h + E(h)| < \delta'$ for $|h| < \delta$. Thus for $0 < |h| < \delta$ we have

$$
\left| \frac{g(f(z+h)) - g(f(z))}{h} - g'(f(z))f'(z) \right| = \left| g'(f(z)) \frac{E(h) + F(f'(z)h + E(h))}{h} \right|
$$

\n
$$
\leq |g'(f(z))| \frac{|E(h)|}{|h|} + \frac{|F(f'(z)h + E(h))|}{h}
$$

\n
$$
\leq |g'(f(z))| \frac{|E(h)|}{|h|} + \frac{\epsilon}{2|f'(z)| + 1} \frac{|f'(z)h + E(h)|}{|h|}
$$

\n
$$
\leq (|g'(f(z))| + 1) \frac{|E(h)|}{|h|} + \frac{\epsilon}{2}.
$$

If we find $\delta_1 > 0$ so that $\frac{|E(h)|}{|h|} < \frac{\epsilon}{2\left(\frac{|a'(f)|}{h}\right)^{n}}$ $\frac{\epsilon}{2(|g'(f(z))|+1)}$ whenever $0 < |h| < \delta_1$. Then if $0 < |h| < \delta_1$ we have

$$
\left|\frac{g(f(z+h)) - g(f(z))}{h} - g'(f(z))f'(z)\right| < \epsilon.
$$

(d) We have

$$
\frac{1}{z+h} - \frac{1}{z} = \frac{-h}{(z+h)z}.
$$

Hence it follows that $\lim_{h\to 0} \frac{1}{h}$ $\frac{1}{h}\left(\frac{1}{z+h}-\frac{1}{z}\right)$ $\frac{1}{z}\Big)=-\frac{1}{z^2}$ $rac{1}{z^2}$. Using product rule and chain rule we obtain

$$
\left(\frac{f}{g}\right)' = f'\frac{1}{g} + f\left(\frac{1}{g}\right)' = \frac{f'}{g} - f\frac{g'}{g^2} = \frac{f'g - fg'}{g^2}.
$$

П

Problem 3. Define $\phi(z) = i \frac{1-z}{1-z}$ $\frac{1}{1+z}$ for $z \neq -1$.

- (a) Let $\lambda(z) = (1 + iz)/(1 iz)$. Show that $\lambda(\phi(z)) = z$, and that ϕ maps $\mathbb{C} \setminus \{-1\}$ one-to-one and onto $\mathbb{C} \setminus \{-i\}.$
- (b) Show that ϕ maps the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ one-to-one and onto the upper half plane $\mathbb{H} = \{z : \text{im } z > 0\}.$ (Hint: consider z in polar forms)

SOLUTION.

- (a) If $w = i(1-z)/(1+z)$, then $-iw(1+z) = 1-z$; so $z = (1 + iw)/1 iw$. Thus, the inverse function of ϕ is λ . It follows that ϕ is one-to-one because it is determine by w. Also, every z is in the range of λ . Thus, ϕ maps $\mathbb{C} \setminus \{-1\}$ one-to-one and onto $\mathbb{C} \setminus \{-i\}$.
- (b) Consider where a circle maps to. Let $z = r \cos \theta + r \sin \theta$. Compute

$$
\phi(z) = i\frac{(1 - r\cos\theta) - ir\sin\theta}{1 + r\cos\theta + ir\sin\theta} = i\frac{(1 - r\cos\theta) - ir\sin\theta}{1 + r\cos\theta + ir\sin\theta} \cdot \frac{1 + r\cos\theta - ir\sin\theta}{1 + r\cos\theta - ir\sin\theta}
$$

$$
= i\frac{(1 - r^2\cos^2\theta - r^2\sin^2\theta) + i(2r\cos\theta\sin\theta)}{(1 + r\cos\theta)^2 + r^2\sin^2\theta} = \frac{-r\sin 2\theta + i(1 - r^2)}{(1 + r\cos\theta)^2 + r^2\sin^2\theta}.
$$

Since the denominator is positive, this lies in the upper half plane if and only if $r < 1$. By (a), the whole upper half plane is in the range of ϕ . So the unit disk must be mapped onto $H.$ \blacksquare

 $\overline{}$ I I $\overline{}$ $\overline{}$

Problem 4. Let $\mathbb{A} = \{z \in \mathbb{C} : \frac{1}{2} < |z| < 2\}$, and let $f(z) = z + \frac{1}{z}$ $\frac{1}{z}$. Show that $f(\mathbb{A})$ is the interior of an ellipse. (Hint: consider the image of circles)

SOLUTION. Let $z = r \cos \theta + ir \sin \theta$. Then

$$
f(z) = (r + 1/r)\cos\theta + i(r - 1/r)\sin\theta,
$$

lies on the curve $x^2/(r+1/r)^2+y^2/(r-1/r)^2+1$, which is an ellipse. To find the foci, compute $c^2 = (r + 1/r)^2 - (r - 1/r)^2 = 4.$

So the foci are ± 2 . Another way to describe the ellipse is

$$
\{z||z-2|+|z+2|=2(r+1/r)\}.
$$

When $r = 1$, we get $f(\cos \theta + \sin \theta) = 2 \cos \theta$ which maps onto $[-2, 2]$.

Now we see that the images of the circles of radius $1 < r < 2$ are distinct ellipses with the same foci. They coincide with the image of the circles of radius $1/r$. The circle of radius 1 maps onto the line segment $[-2, 2]$. Since $r + 1/r$ is continuously monotone increasing on $r \geq 1$, and takes $(1, 2)$ onto $(4, 5)$, the image ellipses fill in the solid ellipse

$$
f(\mathbb{A}) = \{z||z - 2| + |z + 2| < 5\}.
$$

Problem 5.

Find all complex numbers z such that $z^8 + 16z^4 + 256 = 0$. Write your answers in the standard form.

SOLUTION. Let $t = z^4$. Then $t^2 + 16t + 256 = 0$. Using the quadratic formula, we get

$$
t = \frac{-16 \pm \sqrt{256 - 4 \cdot 256}}{2} = -8 \pm 8\sqrt{3}i = 16e^{2\pi i/3}, 16e^{4\pi i/3}
$$

.

Thus,

 $z^4 = 16e^{2\pi i/3}$, or $16e^{4\pi i/3} \implies z = 2 \cdot e^{\pi i/6}$, $2 \cdot e^{2\pi i/3}$, $2 \cdot e^{7\pi i/6}$, $2 \cdot e^{5\pi i/3}$, $2 \cdot e^{\pi i/3}$, $2 \cdot e^{4\pi i/3}$, $2 \cdot e^{11\pi i/6}$, and therefore √ √

$$
z = \pm \sqrt{3} \pm i, \pm 1 \pm \sqrt{3}i.
$$