PMATH 352, Spring 2011

Solution of Homework #1

Problem 1. Let V C C be open and z € C.
(a) If f: V — C is C-differentiable at z, show that f is continuous at z.
(b) Prove the product rule: if f,g:V — C are each C-differentiable at z, then so too is fg with

(f9)'(2) = F'(2)9(2) + f(2)g' ().
SOLUTION.
(a) We have for each z € V
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- re)| =0

By usual limit rules and the continuity of w — |w| we have

lim |f(w) = £(2)] = | Hm (£(w) = £()) + 0|

= |Tim (f(w) = £(2) + Jim f/(z)(w - 2)
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This implies lim,,—, f(w) = f(2).
Altenatively, use 2. (a) to obtain the estimate

[f(w) = f(2)] < lafjw = 2] + | E(w - 2)]

where the right-hand side goes to 0 as w — z.
(b) We have for z € V and h # 0 such that z +h € V,

f(z+h)g(z+h) — f(2)g9(2)

h
_ fE+h)g(z+h) = f(2)g(z+h) + f(2)9(z+ h) — f(2)9(2)
h

We take limit &~ — 0 and note that lim,_,0g(z + h) = g(2) by (a), above, and use usual
limit rules, to obatain the desired result. R

Problem 2. Let V C C be open and z € C.

(a) Show that f : V — C is differentiable at z if and only if there is @ € C and a function
E : D(0,r) — C (where r > 0 is such that D(z,r) C V') such that
E(h
f(z+h) = f(z) + ah+ E(h) for h € D(0,7), E(0)=0 and lim Ez) =0.

h—0

(b) Prove that for the “error” function E, in (a), above, that for any € > 0 there is § > 0 such
that for |h| < 6 we have |E(h)| < €|h|.



(c) Prove the chain rule: If f : V' — C is differentiable at z, U is an open set containing f(z)
and g : U — C is C-differentiable at f(z), then the composition g o f is C-differentiable at
z with

(9o f)(2) =4'(£(2))d'(2).

(d) Let g : C\{0} — C be given by ¢(z) = L. Show that ¢'(z) exists for each z # 0 and is equal
to —%. Deduce from this, and from the differentiation rules above, the quotient rule: if
f,9: V — C are C-differentiable at z € V' and g(z) # 0, then f/g is C-differentiable at z

with

SOLUTION.

(a) If f is C-differentiable at z, set a = f’(z) and define E : D(0,7) — C by

f(zh ! ;
wg = {, T

Then the desired result holds, by definition.
Conversely, if a, E are as in the question we obtain

f(z+h})b—f(z) :a+E§L}l)forh7’50-

% fz4+h)—f(2)

Since limy_,q = 0 we see that limp,_,o =———— exist and equals a.

(b) Since limp_y %h) =0, given € > 0 there is § > 0 (we may assume 6 < r) so that

[E(h)]
Id

< € whenever 0 < |h] < §.

Hence, using additionally the fact that £(0) = 0 we find
|E(h)| < €|h| whenever |h| < 0.

(c) Let E : D(0,7) — C be the error function for f at z as promised by (a); and F : D(0,7") — C
the error function for g at f(z), as promised by (a). For suitably small h # 0 we have

9(f(z+h)) = g(f(2)) = g(f(2) + ['(2)h + E(h)) — g(f(2)), by (a)
9(f(2)) + g (F))(f'(2)h + E(h)) + ( "(2)h+ E(h)) — g(f(2)), by (a)
g (F)(f'()h+ E(h) + F(f'(2)h + E(h)).

Let € > 0 be given. By (b), find ¢’ € (0,7") for which |F(n)| < W\m for |n| < ¢'.

Since limy,_,o E(h) = 0 (see proof of 1. (a),above) we have that limy, o (f'(2)h + E(h)) = 0.
Hence there is ¢ € (0,r) such that |f'(2)h+ E(h)| < ¢ for |h] < §. Thus for 0 < |h| < d we
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Hence it follows that limh_)()% (Z-il-h — %) = —Z%.

Using product rule and chain rule we obtain
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Problem 3. Define ¢(z) = i— ® for 2 # —1.
z

(a) Let A(2) = (1 +1iz)/(1 —iz). Show that A(¢(z)) = z, and that ¢ maps C\ {—1} one-to-one
and onto C\ {—i}.

(b) Show that ¢ maps the unit disk D = {z € C: |z| < 1} one-to-one and onto the upper half
plane H = {z : imz > 0}. (Hint: consider z in polar forms)

SOLUTION.
(a) fw=14i(1—2)/(1+2), then —iw(l+2) =1—2;80 z = (1+iw)/1 —iw). Thus, the inverse
function of ¢ is A. It follows that ¢ is one-to-one because it is determine by w. Also, every
z is in the range of A. Thus, ¢ maps C\ {—1} one-to-one and onto C\ {—i}.
(b) Consider where a circle maps to. Let z = rcosf + rsinf. Compute

b(2) = (1—7"(:080) irsin 0 Z(l—rcos&)—irsinﬁ'1+rcos€)—z’rsin6’
1+rcos€)+zrsm9 1+ rcosf)+irsinf® 1+ rcosf)—irsiné
(1 —r?cos?0 —r?sin®0) +i(2rcosfsinf)  —rsin26 +i(1 —r?))

B (1+7cosf)? +r2sin?6 (14 7cosf)? +1r2sin’0

Since the denominator is positive, this lies in the upper half plane if and only if » < 1. By
(a), the whole upper half plane is in the range of ¢. So the unit disk must be mapped onto

H n
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Problem 4. Let A={z€ C: ] < |z| <2}, and let f(z) = z+ 1. Show that f(A) is the interior
of an ellipse. (Hint: consider the image of circles)

SOLUTION. Let z =rcosf +irsinf. Then
f(z)=(r+1/r)cos@+i(r—1/r)sinb,
lies on the curve z2/(r + 1/7)% +42/(r — 1/r)? + 1, which is an ellipse. To find the foci, compute
E=r+1/r)-(r—-1/r)* =4
So the foci are +2. Another way to describe the ellipse is
{zllz =2|+|z+2[=2(r+1/r)}.
When r = 1, we get f(cosf + sinf) = 2 cos# which maps onto [—2,2].

Now we see that the images of the circles of radius 1 < r < 2 are distinct ellipses with the same
foci. They coincide with the image of the circles of radius 1/r. The circle of radius 1 maps onto
the line segment [—2,2]. Since r 4+ 1/r is continuously monotone increasing on r > 1, and takes
[1,2) onto [4,5), the image ellipses fill in the solid ellipse

fAA)={z]lz—=2|+|z+2| <5}. 1
Problem 5.

Find all complex numbers z such that z® 4+ 162z* 4+ 256 = 0. Write your answers in the standard
form.

SOLUTION. Let t = z*. Then ¢? 4 16t + 256 = 0. Using the quadratic formula, we get

16+ v/256 — 4-256 - »
— 26 20— _8:+8V3i = 166277/3, 16¢17/3,

Thus,
e 16627ri/3’ or 16e4™/3 — , — 2.e7ri/6’2.627ri/3’2_677”'/672.657ri/372.€7ri/3,2.6571'1'/6’2_647ri/3’2.6117ri/6’

and therefore

z=4V344,+1+V30 1



