
PM 352 Assignment 2 Solutions

1. Suppose f = u + iv on Ω where u, v : Ω → R. Since f is real valued, v(z) = 0 for all
z ∈ Ω. Also, f is holomorphic so we know (by the Cauchy-Riemann equations)

∂u

∂x
=
∂v

∂y
;
∂v

∂x
= −∂u

∂y
.

Combining these two facts we get

∂u

∂x
=
∂v

∂y
= 0;

∂v

∂x
= −∂u

∂y
= 0.

It follows that

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= 0

and hence f is constant.
2. We calculate:

Dζf(z) = lim
t→0
t∈R

f(z + tζ)− f(z)

t

= lim
t→0
t∈R

f(z + tζ)− f(z)

t
× ζ

ζ

= lim
t→0
t∈R

f(z + tζ)− f(z)

tζ
× ζ

= f ′(z)ζ,

and we’re done.
3. (a) Suppose that R > 0 and take any 0 ≤ r < R. We know that the series (rn|cn|)∞n=0

is bounded. Hence there is a constant M > 0 such that |cn|rn ≤M for all n. Hence

|cn|1/n ≤
M1/n

r
.

Since limn→0M
1/n = 1 it follows that

lim sup |cn|1/n ≤
1

r
.

As this is true for any 0 < r < R we have that lim sup |cn|1/n ≤ 1
R .

Now suppose that lim sup |cn|1/n = t < 1
R . Choose an ε > 0 such that t + ε < 1

R .
By the definition of the limit superior we have that, for all but finitely many n,

|cn|1/n ≤ t+ ε.

Choose t+ ε < t0 <
1
R . For all but finitely many n we have

|cn|1/n
1

t0
≤ t+ ε

t0
< 1.

Hence the sequence ( 1
t0

n|cn|) is bounded. But 1
t0
> R. This contradiction tells us

that lim sup |cn|1/n = R.
Now suppose that R = ∞. Using the same argument as above we have that
lim sup |cn|1/n ≤ 1

r for any 0 < r <∞. Hence lim sup |cn|1/n = 0.

Finally, we will show that R = 0 if and only if (|cn|1/n)∞n=0 is unbounded. Suppose

(|cn|1/n)∞n=0 is bounded. Then we can find L > 0 such that for all but finitely many
n we have

L|cn|1/n < 1.



Hence (Ln|cn|1/n)∞n=0 is bounded and R ≥ L 6= 0. The converse follows from the

R > 0 case (we showed R 6= 0 implies that (|cn|1/n)∞n=0 is bounded).
(b) Choose 0 < r < 1/L if L 6= 0 and r > 0 in the case when L = 0. In either case we

have rL < 1. Choose ε > 0 so that rL+ ε < 1. By hypothesis there is an N ∈ N so
that, for n ≥ N , we have ∣∣∣∣r|cn+1|

|cn|
− rL

∣∣∣∣ < ε.

Hence we have

−ε+ rL <
r|cn+1|
|cn|

< ε+ rL < 1.

He have now that, for n large enough, rn+1|cn+1| < rn|cn|. Since, after a finite
number terms, the sequence (rn|cn|)∞n=0 is decreasing we must have that (rn|cn|)∞n=0

is bounded. Letting R be as in 3.(a), it follows R = 1/L when L 6= 0 and R = ∞
when L = 0.

4. (a) For each n ∈ N define bn as

bn =

n∑
k=0

ckdn−k.

and let fg be the power series (fg)(z) =
∑
bnz

n. We will show that (fg)(z) has
radius of convergence at least min(R,S) and that the polynomials fNgN converge
to fg (where fN is the sum of the first N terms of the power series f , and similarly
for g).
First we make an important observation: If (an)∞n=0 is a sequence of complex num-
bers and T = sup{r ≥ 0 : (rncn)∞n=0 is bounded in C}, then T is the radius of
convergence for the power series

∑
anz

n. To see this, take |z| < r < T . Then
(|z|n|an|)∞n=0 is bounded, say |z|n|an| ≤M . We have now that

|z|n|an| ≤ |an||r|n ≤ |an|
( r
R

)n
Rn ≤M

( r
R

)n
.

It follows that f(z) is absolutely convergent for |z| < T (by comparing with a
geometric series). That

∑
anz

n is not convergent when |z| > T is immediate since
(|z|nan)∞n=0 is not bounded. Hence question 3 has given us two useful ways to
calculate the radius of convergence of a power series. We will use 3. (a) in what
follows.
Now choose any 0 < s < min(R,S). Since (sncn)∞n=0 and (sndn)∞n=0 are bounded we
can find a constant C so that

|cn| ≤
C

sn
and |dn| ≤

C

sn
.

It follows that

|bn| ≤
(n+ 1)C2

sn

and hence

|bn|1/n ≤
(n+ 1)1/nC2/n

s
.

Since (n+ 1)1/nC2/n → 1 it follows that

lim sup |bn|1/n ≤
1

s
.

As this works for any 0 < s < min(R,S) it follows from question 3 (a) and the
preceding paragraph that the radius of convergence of (fg)(z) is at least min(R,S).



Note that we have also shown that for |z| < min(R,S) the series
∑∞

n=N+1

∑N
k=0 |ck||bn−k||zn|

is finite for any N . We have

|(fg)N (z)− fn(z)gN (z)| ≤
∞∑

n=N+1

N∑
k=0

|ck||bn−k||zn|

and since the right hand side can be made arbitrarily small (by increasing N) we
have

f(z)g(z) = lim fN (z)gN (z) = (fg)(z).

(b) The power series expansion of exp is exp(z) =
∑∞

n=0 z
n/n!. That exp(w + z) =

exp(w) exp(z) follows immediately from 4.(a), using the binomial theorem to expand
(w + z)n.
We show the first identity, the second is similar. Expanding the righthand side we
get

cos(w) cos(z)− sin(w) sin(z) =

(
eiw + e−iw

2

)(
eiz + e−iz

2

)
−
(
eiw − e−iw

2i

)(
eiz − e−iz

2i

)
=

1

4
[eiweiz + eiwe−iz + e−iweiz + e−iwe−iz

+ eiweiz − eiwe−iz − e−iweiz + e−iwe−iz]

=
eiweiz + e−iwe−iz

2

=
ei(w+z) + e−i(w+z)

2
= cos(w + z).

5. (a) Omitted
(b) Let w = x + i0 where x < 0 be a point on the negative x-axis and let wn =

|x|ei(1/n−π). Since eiπ = −1 we have that wn → w as n→∞.

Let zn = |x|ei(1/n=π), then zn → w by the same reasoning. However arg(wn) =
π− 1/n→ π and arg(zn) = 1/n− π → −π. It follows that arg is not continuous on
the negative x-axis.

(c) Take w = x + iy ∈ K, so y > 0. Alternatively w = |w|eiθ where 0 < θ < π. It
follows that

cos(θ) =
x√

x2 + y2
,

hence we define the logarithm as

log(w) =
1

2
log(x2 + y2) + i arccos

(
x√

x2 + y2

)
for w = x+ iy ∈ K.
To show that log is holomorphic on K you just need to check the Cauchy-Riemann
equations. Recalling that

d

dt
(arccos(t)) =

−1√
1− t2

for −1 < t < 1, you should get

∂u

∂x
=

x

x2 + y2
∂u

∂y
=

y

x2 + y2

∂v

∂y
=

−y
x2 + y2

∂v

∂y
=

x

x2 + y2
.



(d) By the same reasoning as above we define the logarithm as

log(w) =
1

2
log(x2 + y2)− i arccos

(
x√

x2 + y2

)
for w = x + iy ∈ L. Again, we check that this satisfies the Cauchy-Riemann
equations to show that it is holomorphic on L.

(e) It follows by how we defined log on the cut plane that elog(z) = z for z = x+ iy and
x 6< 0. Differentiating we get

1 = elog(z)(log(z))′ = z(log(z))′.

Hence (log(z))′ = 1/z.


