Assignment 2 Solutions

1. Suppose f = u + iv on Ω where $u, v : \Omega \to \mathbb{R}$. Since f is real valued, v(z) = 0 for all $z \in \Omega$. Also, f is holomorphic so we know (by the Cauchy-Riemann equations)

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

Combining these two facts we get

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0; \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = 0.$$

It follows that

$$f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = 0$$

and hence f is constant.

2. We calculate:

$$D_{\zeta}f(z) = \lim_{\substack{t \to 0 \\ t \in \mathbb{R}}} \frac{f(z + t\zeta) - f(z)}{t}$$
$$= \lim_{\substack{t \to 0 \\ t \in \mathbb{R}}} \frac{f(z + t\zeta) - f(z)}{t} \times \frac{\zeta}{\zeta}$$
$$= \lim_{\substack{t \to 0 \\ t \in \mathbb{R}}} \frac{f(z + t\zeta) - f(z)}{t\zeta} \times \zeta$$
$$= f'(z)\zeta,$$

and we're done.

3. (a) Suppose that R > 0 and take any $0 \le r < R$. We know that the series $(r^n |c_n|)_{n=0}^{\infty}$ is bounded. Hence there is a constant M > 0 such that $|c_n|r^n \le M$ for all n. Hence

$$c_n|^{1/n} \le \frac{M^{1/n}}{r}.$$

Since $\lim_{n\to 0} M^{1/n} = 1$ it follows that

$$\limsup |c_n|^{1/n} \le \frac{1}{r}.$$

As this is true for any 0 < r < R we have that $\limsup |c_n|^{1/n} \leq \frac{1}{R}$. Now suppose that $\limsup |c_n|^{1/n} = t < \frac{1}{R}$. Choose an $\varepsilon > 0$ such that $t + \varepsilon < \frac{1}{R}$. By the definition of the *limit superior* we have that, for all but finitely many n,

$$|c_n|^{1/n} \le t + \varepsilon$$

Choose $t + \varepsilon < t_0 < \frac{1}{R}$. For all but finitely many n we have

$$|c_n|^{1/n}\frac{1}{t_0} \le \frac{t+\varepsilon}{t_0} < 1.$$

Hence the sequence $(\frac{1}{t_0}^n |c_n|)$ is bounded. But $\frac{1}{t_0} > R$. This contradiction tells us that $\limsup |c_n|^{1/n} = R$.

Now suppose that $R = \infty$. Using the same argument as above we have that $\limsup |c_n|^{1/n} \leq \frac{1}{r}$ for any $0 < r < \infty$. Hence $\limsup |c_n|^{1/n} = 0$.

Finally, we will show that R = 0 if and only if $(|c_n|^{1/n})_{n=0}^{\infty}$ is unbounded. Suppose $(|c_n|^{1/n})_{n=0}^{\infty}$ is bounded. Then we can find L > 0 such that for all but finitely many n we have

$$L|c_n|^{1/n} < 1.$$

PM 352

Hence $(L^n|c_n|^{1/n})_{n=0}^{\infty}$ is bounded and $R \ge L \ne 0$. The converse follows from the R > 0 case (we showed $R \ne 0$ implies that $(|c_n|^{1/n})_{n=0}^{\infty}$ is bounded).

(b) Choose 0 < r < 1/L if $L \neq 0$ and r > 0 in the case when L = 0. In either case we have rL < 1. Choose $\varepsilon > 0$ so that $rL + \varepsilon < 1$. By hypothesis there is an $N \in \mathbb{N}$ so that, for $n \geq N$, we have

$$\left|\frac{r|c_{n+1}|}{|c_n|} - rL\right| < \varepsilon$$

Hence we have

$$-\varepsilon + rL < \frac{r|c_{n+1}|}{|c_n|} < \varepsilon + rL < 1.$$

He have now that, for *n* large enough, $r^{n+1}|c_{n+1}| < r^n|c_n|$. Since, after a finite number terms, the sequence $(r^n|c_n|)_{n=0}^{\infty}$ is decreasing we must have that $(r^n|c_n|)_{n=0}^{\infty}$ is bounded. Letting *R* be as in 3.(a), it follows R = 1/L when $L \neq 0$ and $R = \infty$ when L = 0.

4. (a) For each $n \in \mathbb{N}$ define b_n as

$$b_n = \sum_{k=0}^n c_k d_{n-k}.$$

and let fg be the power series $(fg)(z) = \sum b_n z^n$. We will show that (fg)(z) has radius of convergence at least min(R, S) and that the polynomials $f_N g_N$ converge to fg (where f_N is the sum of the first N terms of the power series f, and similarly for g).

First we make an important observation: If $(a_n)_{n=0}^{\infty}$ is a sequence of complex numbers and $T = \sup\{r \ge 0 : (r^n c_n)_{n=0}^{\infty}$ is bounded in $\mathbb{C}\}$, then T is the radius of convergence for the power series $\sum a_n z^n$. To see this, take |z| < r < T. Then $(|z|^n |a_n|)_{n=0}^{\infty}$ is bounded, say $|z|^n |a_n| \le M$. We have now that

$$|z|^n |a_n| \le |a_n| |r|^n \le |a_n| \left(\frac{r}{R}\right)^n R^n \le M \left(\frac{r}{R}\right)^n$$

It follows that f(z) is absolutely convergent for |z| < T (by comparing with a geometric series). That $\sum a_n z^n$ is not convergent when |z| > T is immediate since $(|z|^n a_n)_{n=0}^{\infty}$ is not bounded. Hence question 3 has given us two useful ways to calculate the radius of convergence of a power series. We will use 3. (a) in what follows.

Now choose any $0 < s < \min(R, S)$. Since $(s^n c_n)_{n=0}^{\infty}$ and $(s^n d_n)_{n=0}^{\infty}$ are bounded we can find a constant C so that

$$|c_n| \le \frac{C}{s^n}$$
 and $|d_n| \le \frac{C}{s^n}$.

It follows that

$$|b_n| \le \frac{(n+1)C^2}{s^n}$$

and hence

$$|b_n|^{1/n} \le \frac{(n+1)^{1/n} C^{2/n}}{s}.$$

Since $(n+1)^{1/n}C^{2/n} \to 1$ it follows that

$$\limsup |b_n|^{1/n} \le \frac{1}{s}.$$

As this works for any $0 < s < \min(R, S)$ it follows from question 3 (a) and the preceding paragraph that the radius of convergence of (fg)(z) is at least $\min(R, S)$.

Note that we have also shown that for $|z| < \min(R, S)$ the series $\sum_{n=N+1}^{\infty} \sum_{k=0}^{N} |c_k| |b_{n-k}| |z^n|$ is finite for any N. We have

$$|(fg)_N(z) - f_n(z)g_N(z)| \le \sum_{n=N+1}^{\infty} \sum_{k=0}^{N} |c_k| |b_{n-k}| |z^n|$$

and since the right hand side can be made arbitrarily small (by increasing N) we have

$$f(z)g(z) = \lim f_N(z)g_N(z) = (fg)(z).$$

(b) The power series expansion of exp is $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. That $\exp(w + z) = \exp(w) \exp(z)$ follows immediately from 4.(a), using the binomial theorem to expand $(w+z)^n$.

We show the first identity, the second is similar. Expanding the righthand side we get

$$\cos(w)\cos(z) - \sin(w)\sin(z) = \left(\frac{e^{iw} + e^{-iw}}{2}\right) \left(\frac{e^{iz} + e^{-iz}}{2}\right) - \left(\frac{e^{iw} - e^{-iw}}{2i}\right) \left(\frac{e^{iz} - e^{-iz}}{2i}\right)$$
$$= \frac{1}{4} [e^{iw}e^{iz} + e^{iw}e^{-iz} + e^{-iw}e^{iz} + e^{-iw}e^{-iz}$$
$$+ e^{iw}e^{iz} - e^{iw}e^{-iz} - e^{-iw}e^{iz} + e^{-iw}e^{-iz}]$$
$$= \frac{e^{iw}e^{iz} + e^{-iw}e^{-iz}}{2}$$
$$= \frac{e^{i(w+z)} + e^{-i(w+z)}}{2} = \cos(w+z).$$

- 5. (a) Omitted
 - (b) Let w = x + i0 where x < 0 be a point on the negative x-axis and let $w_n = |x|e^{i(1/n-\pi)}$. Since $e^{i\pi} = -1$ we have that $w_n \to w$ as $n \to \infty$. Let $z_n = |x|e^{i(1/n=\pi)}$, then $z_n \to w$ by the same reasoning. However $\arg(w_n) = \pi - 1/n \to \pi$ and $\arg(z_n) = 1/n - \pi \to -\pi$. It follows that arg is not continuous on the negative x-axis.
 - (c) Take $w = x + iy \in K$, so y > 0. Alternatively $w = |w|e^{i\theta}$ where $0 < \theta < \pi$. It follows that

$$\cos(\theta) = \frac{x}{\sqrt{x^2 + y^2}},$$

hence we define the logarithm as

$$\log(w) = \frac{1}{2}\log(x^2 + y^2) + i\arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right)$$

for $w = x + iy \in K$.

To show that log is holomorphic on K you just need to check the Cauchy-Riemann equations. Recalling that

$$\frac{d}{dt}\left(\arccos(t)\right) = \frac{-1}{\sqrt{1-t^2}}$$

for -1 < t < 1, you should get

(d) By the same reasoning as above we define the logarithm as

$$\log(w) = \frac{1}{2}\log(x^2 + y^2) - i\arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right)$$

for $w = x + iy \in L$. Again, we check that this satisfies the Cauchy-Riemann equations to show that it is holomorphic on L.

(e) It follows by how we defined log on the cut plane that $e^{\log(z)} = z$ for z = x + iy and $x \neq 0$. Differentiating we get

$$1 = e^{\log(z)} (\log(z))' = z (\log(z))'.$$

Hence $(\log(z))' = 1/z$.