PM 352 Assignment 2 Solutions

1.

2.

3.

Suppose f = u + iv on Q where u,v : Q — R. Since f is real valued, v(z) = 0 for all
z € Q. Also, f is holomorphic so we know (by the Cauchy-Riemann equations)
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Combining these two facts we get
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and hence f is constant.
We calculate:
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and we're done.
(a) Suppose that R > 0 and take any 0 < r < R. We know that the series (7"|c,|)22,
is bounded. Hence there is a constant M > 0 such that |c,|r" < M for all n. Hence
1/n
e/ < Mi
r
Since lim,,_,o MY =1 it follows that

lim sup |¢,|7/™ < =.
r

As this is true for any 0 < 7 < R we have that limsup |c,|"/" < £

Now suppose that limsup |c,|V/" =t < %. Choose an € > 0 such that t +¢e < %.
By the definition of the limit superior we have that, for all but finitely many n,

’Cn|1/n <t+e.
Choose t + ¢ <ty < %. For all but finitely many n we have
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Hence the sequence (%n|cn|) is bounded. But % > R. This contradiction tells us
that limsup |c,|'/™ = R.
Now suppose that R = oo. Using the same argument as above we have that
limsup |e, |/ < L for any 0 < r < co. Hence limsup |c, |/ = 0.
Finally, we will show that R = 0 if and only if (|c,|'/")%%, is unbounded. Suppose
(Jen|'/™)22, is bounded. Then we can find L > 0 such that for all but finitely many
n we have

Llen)V/™ < 1.



Hence (L"|c,|Y™)%%, is bounded and R > L # 0. The converse follows from the
R > 0 case (we showed R # 0 implies that (|c,|'/")%%, is bounded).

Choose 0 < r < 1/Lif L # 0 and r > 0 in the case when L = 0. In either case we
have rL < 1. Choose € > 0 so that rL + ¢ < 1. By hypothesis there is an N € N so

that, for n > N, we have

rlent] — TL‘ < e.
|Cn’
Hence we have
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He have now that, for n large enough, r" ™t c, 1| < r"|c,|. Since, after a finite
number terms, the sequence (r"|c, )22, is decreasing we must have that (r"|cy|)02
is bounded. Letting R be as in 3.(a), it follows R = 1/L when L # 0 and R = oo
when L = 0.

For each n € N define b,, as

bn = i Clcdnfk-
k=0

and let fg be the power series (fg)(z) = > b,z". We will show that (fg)(z) has
radius of convergence at least min(R,S) and that the polynomials fygn converge
to fg (where fy is the sum of the first N terms of the power series f, and similarly
for g).

First we make an important observation: If (a,)5%, is a sequence of complex num-
bers and T' = sup{r > 0 : (r"¢,), is bounded in C}, then T is the radius of
convergence for the power series > a,z". To see this, take |z| < r < T. Then
(|12]™an])oe is bounded, say |z|"|an| < M. We have now that

21" an] < lanl 7l < Jau] ()" B < 21 (5)"

It follows that f(z) is absolutely convergent for |z| < T (by comparing with a
geometric series). That ) a,2" is not convergent when |z| > T is immediate since
(|z]™an)se, is not bounded. Hence question 3 has given us two useful ways to
calculate the radius of convergence of a power series. We will use 3. (a) in what
follows.

Now choose any 0 < s < min(R, S). Since (s"¢,)02 and (s"dy )52 are bounded we
can find a constant C' so that

len| < sgn and |dy| < s%

It follows that )
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and hence )
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Since (n + 1)Y/*C?/™ — 1 it follows that

1
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s

As this works for any 0 < s < min(R,S) it follows from question 3 (a) and the
preceding paragraph that the radius of convergence of (fg)(z) is at least min(R, S).



Note that we have also shown that for |2| < min(R, S) the series Y 72 | Ziv:o lek||bn—k||2"]
is finite for any N. We have

[(f9)n(2) — falz Z Z!%an kll2"|
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and since the right hand side can be made arbitrarily small (by increasing N) we
have

f(2)g(z) =1im fn(2)gn(2) = (F9)(2).

(b) The power series expansion of exp is exp(z) = Y .-, 2"/nl. That exp(w + z) =
exp(w) exp(z) follows immediately from 4.(a), using the binomial theorem to expand
(w+ 2)™.

We show the first identity, the second is similar. Expanding the righthand side we
get
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ei(w+z) + e—z’(w—i—z)
= 5 = cos(w + 2).

5. (a) Omitted
(b) Let w = x + i0 where x < 0 be a point on the negative z-axis and let w, =
|z|e’1/7"=™) . Since €™ = —1 we have that w, — w as n — oo.
Let z, = |z|e'/"=™)  then z, — w by the same reasoning. However arg(w,) =
m—1/n — 7 and arg(zn) =1/n—m — —mn. It follows that arg is not continuous on
the negative z-axis.
(c) Take w =  + iy € K, so y > 0. Alternatively w = |w|e? where 0 < § < 7. It

follows that
T

cos(f) =

hence we define the logarithm as

1 T
log(w) = = log(z* + y?) + i arccos | ———=

2 /22 + y2
for w=2z+1iy € K.
To show that log is holomorphic on K you just need to check the Cauchy-Riemann
equations. Recalling that
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for —1 <t < 1, you should get
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(d) By the same reasoning as above we define the logarithm as

1 x
log(w) = = log(z? 4 y*) — i arccos (
2 12 + 42

for w = x + iy € L. Again, we check that this satisfies the Cauchy-Riemann
equations to show that it is holomorphic on L.

(e) It follows by how we defined log on the cut plane that '°8(?) = 2 for z = 2 + iy and
x &£ 0. Differentiating we get

1 = o5 (log(2))’ = =(l0g(2))"
Hence (log(z)) =1/=.



