PM 352 Assignment 4 Solutions
1. Let f(z) =2/(2* — 1), then
2 1 1

&) =a—a=T"7"711

Looking at each summand separately we have:
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Thus the power series expansion of f is
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with radius of convergence 1.
2. (a) Let f(z) = cos(z). Note that f”(z) = sin(z), thus by Cauchy’s Integral Formula
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dz = f"(0) = sin(0) = 0.
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Hence f &Sf— 2 =0.
(b) Let f(z) = e*". By Cauchy’s Integral Formula

2

= L C g = #(0) = 2(0)e” = 0.

27i )., 22
Hence f dz =0.
(c) Let f(z) == —L. The function f has poles of order 1 at i and —i (both are in the
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circle |z| = 2). Calculating the residue at the poles we have

Res(f,i) =i and Res(f, —i) = —i.

The Residue Theorem tells us
/f(z)dz =2mi(i + (—i)) = 0.
.

3. This follows immediately by the Maximum Modulus Principle. Here is another proof
using Cauchy’s Integral Formula. For any a in the disk,
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where v is the path around the boundary of the disk. It follows that f(z) = 0 on the
disk.



4. First to show that u has the mean-value property. Let v be the circle around p of radius
r < R. Using Cuachy’s Integral formula:
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hence u(p) = (1/2m) fo% u(p + re't)dt.
Now let M be the maximum value u takes on v and let m be the minimum. Then
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A similar inequality holds for m, and we get m < u(p) < M.
If u is non-constant on the boundary then there is some ¢ € [0, 27] such that u(p +
re®) < M. Hence we have (using the hint)
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Now since M is attained at some s € [0,27] (by the extreme value theorem), we have
that u(p) < u(p + re*®). A similar argument applied to m gives the other inequality.
5. We have|f(z)| < M(1+ |z|"). Take k > n, using Cauchy’s Estimate for f*) in a disk of
radius R about the origin we get
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Taking the limit as R — oo we get
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Hence the power series of f about 0 is a polynomial of degree at most n. Since f is entire
it follows that f is a polynomial of degree at most n.



