PM 352 Assignment 5 Solutions

1. We could try to do this using the maximum modulus principle, but there is a much easier
way. For any z € C, |z + 2| measures the distance from z to the point —2. By inspection
the closest point in the triangle to —2 is z = 0 and the furthest is z = 2. Thus |z + 2|? is
minimized at z = 0 as |0 + 2|?> = 4; and |z + 2|2 is maximized at z = 2 as |2 + 2|> = 16.

2. Take any closed curve « in 2. We want to show that « is a homotopic to a point. WLOG
we will view a as a function a : [0, 1] — €. Since €2 is star-shaped there is a point p € Q
such that for any t € [0, 1] the straight line from «(t) and p is in Q. The points on this
line can be described as (1 — s)a(t) + sp for s € [0,1]. For each s € [0, 1] we define the
curve aig as

as(t) = (1 —s)a(t) + sp

for t € [0,1]. The map as : [0,1] — £ is continuous since it is a linear combination of
continuous functions, and is closed since a5(0) = a5(1). Since a3 = « and ap = p, a is
homotopic to the point p.

3. (a) The closed curve ~ is homotopic to a point p € €2, thus Ind,w = Ind,w, where o
is the closed curve that is constantly p. To see that Ind,w = 0 just look at the
definition of the winding number (any integral over a path of length 0 will be 0).

(b) Choose zy € 2 define h(z) = fﬁ/ f(w)dw where 7 is a piecewise smooth curve from
29 to z. Suppose 6 is another piecewise smooth path from zy to z. Let 6! be the
path from z to zp, determined by § (i.e. 67 1(t) =d(1 —¢t)). Then a:=v+ 5 'is a
closed path in €. By Cauchy’s Theorem we have

0= 74 f(w)dw = / f(w)dw - /5 f(w)dw,

thus we have fﬁ/ f(w)dw = [ f(w)dw. Hence, h(z) is independent of the choice of
v. By what you've seen in class h/(z) = f(z) and so h is the desired primitive.

4. Since Q) is simply connected, f analytic and non-vanishing, there is a branch of log(f(2))
on Q, i.e. there is a holomorphic function i on Q such that e"*) = f(z) for all z € Q.
Let g(z) = eM?)/™ Then g(2)" = ") = f(2).

5. First we will see how many zeros of p(z) are in the open unit disk. Let f(z) = —82% and
h(z) = 28 + 22% + 1, so that p(z) = f(2) + h(z). Now, for any |z| = 1

h(2)] < [o® + 202" +1 =4 <8 = |f(2)].

Now by Rouché’s Theorem, p(z) and f(z) have the same number of zeros in the open
unit disk. Thus p(z) has 2 zeros in the unit cirlce.

If we now calculate how many zeros p has in the disk |z| < 2 and subtract 2, then we
will have found how many zeros are in 1 < |z| < 2. However, the unit circle is not in A
so we don’t want to count the zeros there. Let’s do the above calculation again with |z|
slightly larger than 1, say |z| = 1.1. Then

h(2)] < |28 + 202 +1 < 6.1 < 9.5 < |£(2)].

Thus p(z) has 2 zeros in the open disk |z| < 1.1. It follows that p has no zeros on the
unit circle.

We now want to find how many zeros p has in the disk |z| < 2. Let f(z) = 2% and
h(z) = 22* — 822 + 1. Then when |z| = 2

\h(2)] < 2l2|* + 8]z + 1 =65 < 256 = |f(2)|.

Again by Rouché’s Theorem, we get that p(z) has 8 zeros in the open disk |z| < 2. Thus
p has 8 — 2 = 6 zeros in A.



6. Take any R > 0. We have by Cauchy’s integral formula
|
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where g is the circle of radius R centred at 0. Since we lim|,|_, f(2)/2z = 0 it follows
that lim|,|_, f(2)/2" = 0 for all positive n. Hence we have

lim fygﬁ dz = 0.
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It follows that f(™(0) = 0 for all n > 0. Hence f has a constant power-series expansion
around 0. Since f is entire, it follows that f is constant.
7. (a) By the product rule
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Thus we get
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(b) Suppose p/(b) = 0. If b is also a zero for p then b = a; for some i, and thus this it is
a convex combination of aq,...,a.

Suppose that p(b) # 0. By our formula we have

n; ni(b— a;)
O_Zb—al_z |b—a;|?

We can write this as
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since 0 = 0. We have now that
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Then Y t; =1 and b= t;a;.



