PM 352 Assignment 6 Solutions

1. (a)

Let f(z) = ﬁ For each R > 0 let yg = [-R,RJU{Re : 0 <t < 7}. For R
large enough, the integral of f around the semicircle of radius R is bounded above
by ,

WR%WS%%O%R—)OO.
The function f has poles of order 2 at ¢ and —i. Only ¢ is in the upper half plane
(where the v are) so we are only interested in the residue at i. Let g(z) = m,

so that f(z) = (2 —i)%g(z). To find the residue of f at i, we calculate ¢’(z). We get
22%i — 22

, —_—

91z) = (z+1)*

thus we have 1

Res(f,i) = ¢'(i) = -

21
We can now calculate the integral:

& T 1 [ T , , T
/(; md!ﬂ == 5 /;OO md!ﬂ = WZReS(f,Z) = §

Let I = [}° 2% dz and let f(z) = 2% where we use the branch of z1/2 on C\R4

1+a2 1422
given by (re'*)1/2 = #1/2¢i/2. We will integrate f over the curve yg = [1/R, R] +
{Re :0<t<2rn}—[1/R,R] —{e"/R:0<t<2r)}.
Note that on the segment —[1/R, R], f(z) takes the values %, so on this segment
the integral (as R — o0) is —e™ ] = —1.
The function f(z) has simple poles at +i. Res(f,i) = €™/*/2i and Res(f, —i) =
—e /4 /24,
The integral over the circle { Re? : 0 < t < 27} is bounded by 2rR(RY?)/(R%+1) <
4rR~Y? - 0 as R — .
The integral over the circle {e"* /R : 0 < t < 27} is bounded by 2r R~ (R~'/2)/(R~2+
1) <4nR™Y2? - 0 as R — oo.
Putting all of this together we get

‘ e7r/4 e—7r/4
(1—(—1))1_2m< -

0
w/4 —7/4 \/5
e e T
I—7T< 5T ) —7rcos(7r/4)—T.
Let I = [}° ﬁ%dm. Let yr be asin (b) and let f(z) = (lfi(gz))z = (z_l?)g;((;li)g using

the principal branch of log on C\R ;. The function f has poles of order 2 at 4i with

residues: )

. T T

Res(f,i) = 1t %

and )
) 3m 9%
Res(f, —Z) = Z — 1—6

The integral over the circle {Re’ : 0 < t < 27} is bounded by (for large R)
27R(log R+ 27)%/(R* —1) <8R '1og? R — 0 as R — .

A similar bound for the integral around {e¢%/R : 0 <t < 27}, gives that the integral
tends to 0 as R — oo.



Looking at the integral on [1/R, R] — [1/R, R] we get
R log?x R (logz + 2mi)? R gn? — 4Amilog x
Tra2 ™ | axae = Ay
1/ (1 +2?) iyr (1+22) yr (1+2?)
Thus in the limit we get
* dx T 7w 3w 9n?
4m? _ M gl =omi(_ T 0T I s 2y
77/0 e i i( 4+16+4 16) T+ 7

Hence I = —m /4 (by equating the real and imaginary parts of the above equation).
(d) Let y(z) = €™ for 0 < z < 27 and set z = €'* so that dz/idz.

/”/2 dx _1/2” da _17{ 1 dz
0 a+sin?z 4 0 a+siny 4 7a+<z2—1>212’

2iz

jé zdz
=9
42t =22a+1)22 41

z
=2 .
m ) Res <z4 220+ 1)2% + 1’“’)

Solving 2* — 2(2a + 1)2% + 1 we get 22 = 2a + 1 4+ 2Va+a?. Since a > 0, 0 <
|2a + 1 — 2v/a+ a?| < 1. The value 2a + 1 — 2v/a + a? has two square roots, call
them 4«. These are simple roots so

R : + - |
€S | = —
24 —2(2a+1)22 +1’ 423 — 420 + 1)z =
1 —1

C4ad —4(2a+1)  8Va+a?

Therefore there are two equal residues at +«. Thus

/”/2 dx —2 m
— 5 = 27 = .
0 a-+sin‘z 8vVa+a?2  2vVa+a?
2. Suppose f is an entire function with f(C) not dense in C. Then there is a ¢ > 0. and a
w € C such that, for any z € C, |f(z) — w| > . Hence we have
1 ' 1
f(z) —w

i.e. m is a bounded entire function. It follows by Liouville’s Theorem that there is

0<

)

€

a constant ¢ € C such that )

f(z) —w
Hence f(z) = 1/c+w is a constant function. Hence if f is a non-constant, entire function
it must have dense range.
3. Take any a > 0,a ¢ Z and let f(z) = ﬁ It is clear that f has poles at z = ia and
z = —ia and no other singularities. Now, we know from class that

= C.

Z f(k) = —m(Res[f(z) cot(mz),ia] + Res[f(z) cot(mz), —ia]).

k=—o00

Hence we get

o . .
1 mweot(iam)  wcot(—iaw)
- _ — = —coth
k_z_: k2 + a2 2ia —2ia g th{ma)



sing the fact that i cot(iz) = coth(z) for the last equality. Rewriting we get
1+2§ ! T coth(ra)
— ——— = — coth(ma
a? pt k2 +a?> a ’

and thus

> 1 T
z_:l P =% coth(ma) 5.2

or equivalently

1 ™ 1
Z m = % COth(ﬂ'a) + ﬁ
k=0

We will integrate f around the curve suggested

%z and let f(z) = 1+z"'
0 0<t<2mi/n},is

. Let I = Tham
in the questlon The integral over the arc, i.e. over the curve {Re® :

This tends to 0 as R — oo.

bounded by AR =T) Rn Nk
The integral over the line segment from Re?™/™ to 0 is

R 1 ) R 1 )
—/ gy = —/ S L
0o 1+ (627rz/nx)n o l+an

Thus, in the limit as R — oo, we get —e2™/"].
Now f has a simple pole at e™/™ and Res(f, emi/n — =€ Thys
(1 . 627”/”)], _ _2772‘671'7:/%

n
and hence ,
I 2mi B m
~ n(emi/n —e—mi/n)  psing/n’
5. (a) Note that f(2) = —1 + mq = —1 + 5y + 31
On A; we have
1 [ee]
LSy
z
1
_ —9(z 1)t
oAb

and .
1 11 ~1\"

== =3 (= — 1),

2z+1) 4 1+51 Z%<2> (z=1)

Thus, the Laurent series for f is

_|_ Z n+1 1)n/2n+2](z _ 1)n‘

f(z)=2(z—-1)"
On A5 we have
1 -1 1 —
R - _ 1— n
T 1-:1- L 2;f 2
1 -1
2 =1 =2(z—1)
and
1 1 1 —
= : =Y (-2 -




Thus, the Laurent series for f is

f)=2+22-1)(-1)""+ _f [(—1)"t2™ =t —1](z — 1),

n=—2
On A3 we have
L=y
— (_1)71271
z+1 o
and
1 o0
o n
2—1 —Zz ’
n=0

Thus, the Laurent series for f is

[e.e] [e.e]
f(Z) — —Z_l _ Zz2n+l — Z z2n+1‘
n=0 n=-—1
(b) This curve is just a stretched circle (an ellipse). It winds around 0 and 1 four times.
It goes around —1 zero times.
(c) To find this integral we need to find the residues at 0 and 1 (we don’t need the
residue at —1 since this is outside the curve). Calculate the Res(f,0) = —1 and
Res(f,1) = 2. Hence

/f(z)dz =2mi(4 x —1+4 x 2) = 8mi.
v

6. (a) cot(z) = £, The singularities of cot z are at the zeroes of sin z. Now sinz = 0 if
and only if €/* —e~% = 0 if and only if €%** = 1. Hence sin z = 0 if and only if z = nr
for an integer n. The derivative of sin is cos and for any integer n cosnm # 0. Hence
these are all simple zeroes for sin. Hence nx is a pole of order 1 for cot z.

(b) The function sin z is entire, so zsin(1/z) is analytic on C\{0}. Using the expansion
of sin z about 0 we get
: > (_1)n —2n
zsin(1/z) znzz:o ot 1)!2

Since there are an infinitely many non-zero terms, zsin(1/z) has an essential singu-
larity at O.
(¢) f(z) is analytic on P\{1}. The Taylor expansion of log z about 1 is

> 1\yn—1
Z 7( 17)1 (z—1)"
n=1

with radius of convergence 1. Hence the Laurent expansion of f about 1 is

_ . (_1)n—1 n
f(z) = n;?)m(z —1)

hence there is a pole of order 3 at 1.



