
PM 352 Assignment 6 Solutions

1. (a) Let f(z) = z2

(z2+1)2
. For each R > 0 let γR = [−R,R] ∪ {Reit : 0 ≤ t ≤ π}. For R

large enough, the integral of f around the semicircle of radius R is bounded above
by

πR
R2

R2 + 1)2
≤ π

R
→ 0 as R → ∞.

The function f has poles of order 2 at i and −i. Only i is in the upper half plane

(where the γR are) so we are only interested in the residue at i. Let g(z) = z2

(z+i)2
,

so that f(z) = (z− i)2g(z). To find the residue of f at i, we calculate g′(z). We get

g′(z) =
2z2i− 2z

(z + i)4
,

thus we have

Res(f, i) = g′(i) =
1

2i
.

We can now calculate the integral:
∫ ∞

0

x

(x2 + 1)2
dx =

1

2

∫ ∞

−∞

x

(x2 + 1)2
dx = πiRes(f, i) =

π

2
.

(b) Let I =
∫∞
0

x1/2

1+x2 dx and let f(z) = z1/2

1+z2
where we use the branch of z1/2 on C\R+

given by (reit)1/2 = r1/2eit/2. We will integrate f over the curve γR = [1/R,R] +
{Reit : 0 ≤ t ≤ 2π} − [1/R,R]− {eit/R : 0 ≤ t ≤ 2π}.
Note that on the segment −[1/R,R], f(x) takes the values x1/2eπi

1+x2 , so on this segment

the integral (as R → ∞) is −eπiI = −I.

The function f(z) has simple poles at ±i. Res(f, i) = eπi/4/2i and Res(f,−i) =

−e−πi/4/2i.
The integral over the circle {Reit : 0 ≤ t ≤ 2π} is bounded by 2πR(R1/2)/(R2+1) <

4πR−1/2 → 0 as R → ∞.
The integral over the circle {eit/R : 0 ≤ t ≤ 2π} is bounded by 2πR−1(R−1/2)/(R−2+

1) < 4πR−1/2 → 0 as R → ∞.
Putting all of this together we get

(1− (−1))I = 2πi

(

eπ/4

2i
− e−π/4

2i

)

so

I = π

(

eπ/4

2
− e−π/4

2

)

= π cos(π/4) =
π
√
2

2
.

(c) Let I =
∫∞
0

log x
(1+x2)2

dx. Let γR be as in (b) and let f(z) = log2(z)
(1+z2)2

= log2(z)
(z−i)2(z+i)2

using

the principal branch of log on C\R+. The function f has poles of order 2 at ±i with
residues:

Res(f, i) = −π

4
+

π2i

16
and

Res(f,−i) =
3π

4
− 9π2i

16
.

The integral over the circle {Reit : 0 ≤ t ≤ 2π} is bounded by (for large R)

2πR(logR+ 2π)2/(R2 − 1) < 8R−1 log2R → 0 as R → ∞.

A similar bound for the integral around {eit/R : 0 ≤ t ≤ 2π}, gives that the integral
tends to 0 as R → ∞.



Looking at the integral on [1/R,R]− [1/R,R] we get
∫ R

1/R

log2 x

(1 + x2)2
dx−

∫ R

1/R

(log x+ 2πi)2

(1 + x2)2
dx =

∫ R

1/R

4π2 − 4πi log x

(1 + x2)2
dx.

Thus in the limit we get

4π2

∫ ∞

0

dx

(1 + x2)2
− 4πiI = 2πi(−π

4
+

π2i

16
+

3π

4
− 9π2i

16
) = π3 + π2i.

Hence I = −π/4 (by equating the real and imaginary parts of the above equation).
(d) Let γ(x) = eix for 0 ≤ x ≤ 2π and set z = eix so that dz/idx.

∫ π/2

0

dx

a+ sin2 x
=

1

4

∫ 2π

0

dx

a+ sin2 x
=

1

4

∮

γ

1

a+
(

z2−1
2iz

)2

dz

iz

= i

∮

γ

zdz

z4 − 2(2a+ 1)z2 + 1

= −2π
∑

|w|<1

Res

(

z

z4 − 2(2a+ 1)z2 + 1
, w

)

.

Solving z4 − 2(2a + 1)z2 + 1 we get z2 = 2a + 1 ± 2
√
a+ a2. Since a > 0, 0 ≤

|2a + 1 − 2
√
a+ a2| < 1. The value 2a + 1 − 2

√
a+ a2 has two square roots, call

them ±α. These are simple roots so

Res

(

z

z4 − 2(2a + 1)z2 + 1
,±α

)

=
z

4z3 − 4(2a+ 1)z
|z=±α

=
1

4α3 − 4(2a + 1)
=

−1

8
√
a+ a2

.

Therefore there are two equal residues at ±α. Thus
∫ π/2

0

dx

a+ sin2 x
= −2π

−2

8
√
a+ a2

=
π

2
√
a+ a2

.

2. Suppose f is an entire function with f(C) not dense in C. Then there is a ε > 0. and a
w ∈ C such that, for any z ∈ C, |f(z)− w| ≥ ε. Hence we have

0 ≤
∣

∣

∣

∣

1

f(z)− w

∣

∣

∣

∣

≤ 1

ε
,

i.e. 1
f(z)−w is a bounded entire function. It follows by Liouville’s Theorem that there is

a constant c ∈ C such that
1

f(z)− w
= c.

Hence f(z) = 1/c+w is a constant function. Hence if f is a non-constant, entire function
it must have dense range.

3. Take any a > 0, a /∈ Z and let f(z) = 1
z2+a2 . It is clear that f has poles at z = ia and

z = −ia and no other singularities. Now, we know from class that
∞
∑

k=−∞

f(k) = −π(Res[f(z) cot(πz), ia] + Res[f(z) cot(πz),−ia]).

Hence we get
∞
∑

k=−∞

1

k2 + a2
= −π cot(iaπ)

2ia
− π cot(−iaπ)

−2ia
=

π

a
coth(πa),



using the fact that i cot(iz) = coth(z) for the last equality. Rewriting we get

1

a2
+ 2

∞
∑

k=1

1

k2 + a2
=

π

a
coth(πa),

and thus
∞
∑

k=1

1

k2 + a2
=

π

2a
coth(πa)− 1

2a2

or equivalently
∞
∑

k=0

1

k2 + a2
=

π

2a
coth(πa) +

1

2a2
.

4. Let I =
∫∞
0

dx
1+xn and let f(z) = 1

1+zn . We will integrate f around the curve suggested

in the question. The integral over the arc, i.e. over the curve {Reit : 0 ≤ t ≤ 2πi/n}, is
bounded by 2πR

n(Rn−1) . This tends to 0 as R → ∞.

The integral over the line segment from Re2πi/n to 0 is

−
∫ R

0

1

1 + (e2πi/nx)n
e2πi/ndx = −

∫ R

0

1

1 + xn
e2πi/ndx.

Thus, in the limit as R → ∞, we get −e2πi/nI.

Now f has a simple pole at eπi/n and Res(f, eπi/n = −eπi/n

n . Thus

(1− e2πi/n)I =
−2πieπi/n

n
and hence

I =
2πi

n(eπi/n − e−πi/n)
=

π

n sinπ/n
.

5. (a) Note that f(z) = −1
z + 1

z2−1
= −1

z + 1
2(z+1) +

1
2(z−1) .

On A1 we have

1

z
=

∞
∑

n=0

(−1)n(z − 1)n,

1

2(z − 1)
= 2(z − 1)−1

and
1

2(z + 1)
=

1

4
· 1

1 + z−1
2

=

∞
∑

n=0

(−1

2

)n+2

(z − 1)n.

Thus, the Laurent series for f is

f(z) = 2(z − 1)−1 +

∞
∑

n=0

[(−1)n+1 + (−1)n/2n+2](z − 1)n.

On A2 we have

1

z
=

−1

1− z
· 1

1− 1
1−z

= −
−∞
∑

n=−1

(1− z)n,

1

2(z − 1)
= 2(z − 1)−1

and
1

z + 1
=

1

z − 1
· 1

1 + 2
z−1

=

−∞
∑

n=−1

(−1)n−12−n−1(z − 1)n.



Thus, the Laurent series for f is

f(z) = (2 + 2−2 − 1)(z − 1)−1 +
−∞
∑

n=−2

[(−1)n−12−n−1 − 1](z − 1)n.

On A3 we have
1

z + 1
=

∞
∑

n=0

(−1)nzn

and
1

z − 1
= −

∞
∑

n=0

zn.

Thus, the Laurent series for f is

f(z) = −z−1 −
∞
∑

n=0

z2n+1 = −
∞
∑

n=−1

z2n+1.

(b) This curve is just a stretched circle (an ellipse). It winds around 0 and 1 four times.
It goes around −1 zero times.

(c) To find this integral we need to find the residues at 0 and 1 (we don’t need the
residue at −1 since this is outside the curve). Calculate the Res(f, 0) = −1 and
Res(f, 1) = 2. Hence

∫

γ
f(z)dz = 2πi(4 ×−1 + 4× 2) = 8πi.

6. (a) cot(z) = cos z
sin z . The singularities of cot z are at the zeroes of sin z. Now sin z = 0 if

and only if eiz−e−iz = 0 if and only if e2iz = 1. Hence sin z = 0 if and only if z = nπ
for an integer n. The derivative of sin is cos and for any integer n cosnπ 6= 0. Hence
these are all simple zeroes for sin. Hence nπ is a pole of order 1 for cot z.

(b) The function sin z is entire, so z sin(1/z) is analytic on C\{0}. Using the expansion
of sin z about 0 we get

z sin(1/z) = z
∞
∑

n=0

(−1)n

(2n+ 1)!
z−2n

Since there are an infinitely many non-zero terms, z sin(1/z) has an essential singu-
larity at 0.

(c) f(z) is analytic on P\{1}. The Taylor expansion of log z about 1 is
∞
∑

n=1

(−1)n−1

n
(z − 1)n

with radius of convergence 1. Hence the Laurent expansion of f about 1 is

f(z) =

∞
∑

n=−3

(−1)n−1

n+ 4
(z − 1)n

hence there is a pole of order 3 at 1.


