
PMATH 352, Spring 2011

Assignment #2
Due at 10:30am on Wednesday, May 25th, 2011

Problem 1. Let Ω be a rectangle or disk and f : Ω → C be a holomorphic function with real values;
i.e., f(z) ∈ R for all z ∈ Ω. Prove that f is a constant.

Problem 2. f V ⊂ C is open, f : V → C, z ∈ V and ζ ∈ T = {ζ ∈ C, |ζ| = 1}, let the directional
derivative be given by

Dζf(z) = lim
t→0
t∈R

f(z + tζ)− f(z)

t

when the limit exists. Show that if f is holomorphic at z then Dζf(z) = f ′(z)ζ for each ζ ∈ T.

Remark: If f ′(z) 6= 0 then one can interpret for ζ, ξ ∈ T, the ratio Dζf(z)/Dξf(z), which by (a) is ζξ̄,
as the angle made by the curves t 7→ f(z + tζ) and t 7→ f(z + tξ). Thus it is often said that “f preserves
angles at z”, or “f is conformal at z”.

Problem 3. Given a sequence (cn)∞n=1 ⊂ C define

R = sup {r ≥ 0 : (rncn)∞n=1 is bounded in C} .
(a) Prove that if R > 0 then

lim sup
n→∞

n
√
|cn| =

{
1/R if R <∞
0 if R =∞

Also show that, R = 0 if and only if the sequence ( n
√
|cn|)∞n=1 is unbounded.

(b) Suppose, morerover, that L = limn→∞ |cn+1|/|cn| exists. Then

L = lim
n→∞

|cn+1|
|cn|

=

{
1/R if R <∞
0 if R =∞.

[For (b), first show that if r < 1/L (r > 0 in the case that L = 0) then there is N in N, such that
for n ≥ N , rn+1|cn+1| < rn|cn| and deduce that (rncn)∞n=1 is bounded. ]

Problem 4.

(a) Let f(z) =
∑∞

n=0 cn(z − z0)
n, g(z) =

∑∞
n=0 dn(z − z0)

n be power series about z0 with respective
radii of convergence R, S. Compute a power series expansion for fg about z0 and show that its
radius of convergence is at least min{R, S}.

(b) Prove that for w, z ∈ C that exp(w + z) = exp(w) exp(z). Use this to deduce the fomulas

cos(w + z) = cos(w) cos(z)− sin(w) sin(z), and

sin(w + z) = cos(w) sin(z) + sin(w) cos(z).

Problem 5.
The intention of this exercise is to improve your understanding of complex logarithms. Part of the

exercise is to read and digest the information given. This material is basic stuff you will need to know.
Every non-zero complex number w = x+ iy has its polar form

w = r(cos θ + i sin θ) = reiθ,

where r = |w| =
√
x2 + y2 > 0 and θ ∈ R. The modulus r is uniquely determined by the non-zero number

w, but the argument θ is not. In fact, any integer multiple of 2π added to θ will give an alternate argument
for w. There is, however, a unique θ in the interval [−π, π) such that w = reiθ.

(a) Draw a simple picture to show you understand the preceding statement.
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Let us denote this chosen argument of w by θ = argw. Thus we get a function on the punctured plane

arg : C \ {0} → [π, π).

(b) Show that arg is not continuous at any point on the negative x-axis. That is, if w = x + i0 and
x < 0, show that arg is discontinuous at w.

So we have the polar form w = reiθ where θ = arg z is the unique argument of z in the interval [−π, π)
and r = |z| > 0. Since r = |z| > 0, there is a unique real number s such that r = es = e|z|. In other words,
s = log |z|.

Thus every non-zero complex w has a unique representation as

w = eseiθ = es+iθ = elog |z|+i arg z.

Thus we learn that if S is the horizontal strip of complex numbers defined by

S = {s+ iθ : s ∈ R and θ ∈ [−π, π)},
then the exponential function

exp : S → C \ {0} where z = s+ iθ 7→ ss+iθ = ez,

is a bijection. The inverse function of this bijection deserves to be called a logarithm. This inverse is the
function

log : C \ {0} → S where w 7→ log |z|+ i arg z.

Since, as we saw in exercise (b), the arg function is discontinuous on the negative x-axis, this log function
is also discontinuous on the negative x-axis. To avoid this hazard, let us remove the negative x-axis from
the domain of log and restrict its domain to the so called cut plane:

Ω = {x+ iy : either y 6= 0 or x > 0} = C \ {x+ i0 : x ≤ 0}.
The restriction of log to the cut plane is a bijection onto the open horizontal strip Σ = {s+iθ : −π < θ < π}.
That is,

log : Ω→ Σ is a bijection.

The job now is to verify that log is holomorphic on the cut plane Ω. We saw in class that if z = x+ iy
lies in the right-half plane H = {x+ iy : x > 0}, then a suitable formula for log z is given by

log z =
1

2
log(x2 + y2) + i arctan

(y
x

)
.

We were then able to use the continuity of the various partial derivatives along with the Cauchy-Riemann
equations to show that log is holomorphic on H. We really want log to be holomorphic on the cut plane
Ω.

(c) Develop a suitable formula for log z when z lies in the half-plane K that lies above the x-axis, and
from that show log is holomorphic on K.

(d) Develop a suitable formula for log z when z lies in the half-plane L that lies below the x-axis, and
from that show log is holomorphic on L.

Having seen that log is holomorphic on three open sets H,K,L that cover the cut plane Ω we conclude
that log is a holomorphic function on the cut plane Ω. This log is known as the principal branch of the
logarithm. Other branches of logarithms are possible by simply changing the 2π interval in which θ can
be uniquely chosen as the argument of a non-zero number w.

(e) Prove that (log z)′ =
1

z
for every z in the cut-plane Ω.

(f) Show there is no function whose derivative is
1

z
for all z 6= 0.

Hint. We shall soon see that if a function f on a region has zero derivative, then f is constant of the
region. It follows from this that if two functions g, f on a region have identical derivatives, then g and
f differ by a constant. A function h whose derivative on a region is f is called a primitive for f . Thus
primitives for a given function on a region, if they exist, are unique up to a constant.


