PMATH 352, Spring 2011

Assignment #3

Due at 10:30am on Wednesday, June 8th, 2011

Problem 1. Find the radius of convergence for the following power series.

(a) $\sum_{n=2}^{\infty} (n!) z^n$. (b) $\sum_{n=2}^{\infty} n^3 z^n$. (c) $\sum_{n=2}^{\infty} \left(\frac{n-2}{n}\right)^n z^n$. (d) $\sum_{n=2}^{\infty} \frac{n!}{n^n} z^n$.

Problem 2. If a_n denotes the sequence defined recursively by,

 $a_0 = 2, \ a_1 = 0, \ a_{n+1} = 2a_n + 3a_{n-1}, \ \text{for } n \ge 1.$

Find the radius of the series $\sum_{n=0}^{\infty} a_n z^n$.

Problem 3. Using your knowledge of geometric series, find a power series expansion that converges to

$$\frac{1}{(2z-1)(z+2)}$$

on a disk centred at the origin, and specify the radius of convergence.

Problem 4. Let

$$\mathbb{H} := \{ z \in \mathbb{C} | \operatorname{Im} z > 0 \}$$

be the upper half plane, and

$$\psi(z) := \frac{\alpha z + \beta}{\gamma z + \delta},$$

where α , β , γ , δ are complex numbers, and $\alpha\delta - \beta\gamma \neq 0$.

- (a) If α , β , γ , δ are real and $\alpha\delta \beta\gamma > 0$, show that $\psi : \mathbb{H} \to \mathbb{H}$ is one-to-one and onto.
- (b) Conversely, if ψ maps \mathbb{H} to \mathbb{H} one-to-one and onto, prove that there exist α , β , γ , $\delta \in \mathbb{R}$ and $\alpha\delta \beta\gamma > 0$.

Problem 5.

- (a) Show that a Möbius map takes $\mathbb{D} = \{z : |z| < 1\}$ onto itself if and only if it has the form $Tz = e^{i\theta} \frac{z-a}{1-\bar{a}z}$ for some $a \in \mathbb{D}$ and $\theta \in \mathbb{R}$.
- (b) Suppose that C_1 and C_2 are two disjoint circles in \mathbb{C} . Show that there is a Möbius map T so that $T(C_1)$ and $T(C_2)$ are concentric; i.e, their centers are the same.