PMATH 352, Spring 2011

Assignment #6 Due at 10:30am on Wednesday, July 20th, 2011

Problem 1. Find
(a)
$$\int_0^\infty \frac{x^2}{(x^2+1)^2} dx$$

(b) $\int_0^\infty \frac{x^{1/2}}{1+x^2} dx$
(c) $\int_0^\infty \frac{\log x}{(1+x^2)^2} dx$
(d) $\int_0^{\pi/2} \frac{dx}{a+\sin^2 x}, \ \forall a > 0.$

Problem 2. If f is a non-constant entire function, prove that $f(\mathbb{C})$ is dense in \mathbb{C} . (Hint. If f is a polynomial, the fundamental theorem of algebra ought to do it. If f is not a polynomial, then the classification of singularities applied to $f(\frac{1}{z})$ should help.)

<u>Problem 3.</u> Show that $\sum_{n=0}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{2a} \coth \pi a + \frac{1}{2a^2}$ for $a > 0, a \notin \mathbb{Z}$.

Problem 4. If n is a positive integer, show that $\int_0^\infty \frac{1}{1+x^n} dx = \frac{\pi/n}{\sin(\pi/n)}$. (Hint: Try the pie shaped path from 0 to r to $re^{2\pi i/n}$ and back to 0, then let $r \to \infty$.)

Problem 5.

(a) Let $f(z) = \frac{1}{z(z^2 - 1)}$ for $z \in \mathbb{C} \setminus \{0, 1, -1\}$. Compute the Laurent series for f on each of the annuli $\mathbb{A}_1 = \{z \in \mathbb{C} | 0 < |z - 1| < 1\}, \mathbb{A}_2 = \{z \in \mathbb{C} | 1 < |z - 1| < 2\}, \mathbb{A}_3 = \{z \in \mathbb{C} | 0 < |z| < 1\},$ (b) Let $\gamma(t) = 1/2 + \cos(4t) + 3\sin(4t)i, t \in [0, 2\pi]$. Compute $\operatorname{Ind}(\gamma, z)$ where $z \in \{-1, 0, 1\}$. (c) Compute $\int_{\gamma} \frac{dz}{z(z^2 - 1)}$.

Problem 6.

Classify the singularities, including orders of poles, for these functions:

- (a) $\cot z$.
- (b) $z \sin(1/z)$.
- (c) $f(z) = \frac{\log z}{(z-1)^4}$ where $\log z$ is the principle branch of the logarithm defined in $\mathbb{P} = \{z : \operatorname{Re} z > 0\}$ (so that $\log 1 = 0$).