Pure Math 450/650, Assignment 1

Due: January 13.

1. Let a < b in \mathbb{R} , \mathcal{X} be a Banach space and $f: [a,b] \to \mathcal{X}$ be a function.

- (a) Prove that if $f:[a,b] \to \mathcal{X}$ is piecewise continuous [i.e. there is a partition $\{a = a_0 < a_1 < \cdots < a_k = b\}$ such that, f is continuous on each interval (a_{i-1}, a_i)], and bounded [i.e. $\sup_{t \in [a,b]} ||f(t)|| < \infty$], then it is Riemann integrable. [Hint: You may use, without proof, the fact that a continuous function on a compact set is uniformly continuous.]
- (b) Show that if $f:[a,b] \to \mathcal{X}$ and $||f(\cdot)||:[a,b] \to \mathbb{R}$ are both Riemann integrable, then

 $\left\| \int_a^b f(t)dt \right\| \le \int_a^b \|f(t)\| dt.$

Note that if f is piecewise continuous and bounded, then so too is $||f(\cdot)||$.

- (c) (BONUS) Determine whether having $f:[a,b]\to\mathcal{X}$ Riemann integrable implies that $||f(\cdot)||:[a,b]\to\mathbb{R}$ is Riemann integrable
- 2. Let |X| denote the *cardinality* of a set X. Show that $|\mathbb{R}| = |\{0,1\}^{\mathbb{N}}|$, where $\{0,1\}^{\mathbb{N}} = \{(\varepsilon_1, \varepsilon_2, \dots) : \varepsilon_i \in \{0,1\} \text{ for } i \text{ in } \mathbb{N}\}$, by establishing an *explicit* bijection $\varphi : \mathbb{R} \to \{0,1\}^{\mathbb{N}}$.

[Hint: Composition of maps is allowed, Cantor-Bernstein is not. Try representing elements of (0,1) in binary, rather than decimal form.]

- 3. Show that the set of rational numbers, \mathbb{Q} , cannot be realized as the intersection of a sequence of open subsets of \mathbb{R} . (In other words, \mathbb{Q} is not a G_{δ} set.)

 [Hint: Baire.]
- 4. (a) Show that if G is an open set in \mathbb{R} , then there exists a sequence J_1, J_2, \ldots of open intervals (which may be a finite sequence) such that

(i)
$$J_i \cap J_j = \emptyset$$
 if $i \neq j$, and

(ii)
$$G = \bigcup_{i=1,2,\dots} J_i$$

Moreover, this sequence is unique up to re-indexing.

Thus for, for G and J_1, J_2, \ldots above, it follows from the σ -additivity of λ that

$$\lambda(G) = \sum_{i=1,2,\dots} \ell(J_i).$$

(b) Deduce that for any set $E \subset \mathbb{R}$, we have

$$\lambda^*(E) = \inf\{\lambda(G) : E \subset G, G \text{ is open}\}.$$