
Pure Math 450/650, Assignment 1: Sketch of Solutions

1. (a) Step #1. Suppose that f is continuous except possibly at the eanpoints a and b.
Let M = supt∈[0,1] ‖f(t)‖ which we may suppose to be non-zero. Let ε > 0 be given.
Let

a1 ∈
(
a, a+

ε

8M

)
, b1 ∈

(
b− ε

8M
, b
)

be choosen so a1 < b1. Then f is continuous on the compact interval [a1, b1]. Let δ > 0
be choosen so for s, t in [a1, b1] with |s − t| < δ we have ‖f(s)− f(t)‖ < ε

2(b−a) . Now
choose a = a0 < a1 < a2 < · · · < an−2 < an−1 = b1 < an = b so

ak − ak−1 < δ for k = 2, . . . , n− 1

and let Pε = {a0, . . . , an}. Now consider partitions of [a, b] P = {b0 < · · · < bn1},Q =
{c0 < · · · < cn2} ⊃ Pε and consider Riemann sums

S(f,P) =

n1∑
i=1

f(s∗i )(bi − bi−1) and S(fQ) =

n2∑
j=1

f(t∗j)(cj − cj−1).

Let R = P ∪Q = {d0 < · · · < dm}. For each k = 1, . . . ,m let

u∗k = s∗i where [dk−1, dk] ⊂ [ci−1, ci] and

u∗∗k = t∗j where [dk−1, dk] ⊂ [dj−1, dj].

Then we have

‖S(f,P)− S(f,Q)‖ =

∥∥∥∥∥
m∑
k=1

f(u∗k)(dk − dk−1)−
m∑
k=1

f(u∗∗k )(dk − dk−1)

∥∥∥∥∥
≤

m∑
k=1

‖f(u∗k)− f(u∗∗k )‖ (dk − dk−1)

≤
∑

dk≤a1 or dk−1≥an−1

(
‖f(u∗k)‖+ ‖f(u∗∗k )‖)(dk − dk−1)

+
∑

a1≤dk−1<dk≤an−1

‖f(u∗k)− f(u∗∗k )‖ (dk − dk−1)

< 2M(a1 − a0 + an − an−1) +
ε

2(b− a)
(an−1 − a1) < ε.

[Indeed, by choice of u∗k, u
∗∗
k we have that they are both in the same interval of the

partition Pε, and when that interval is within [a1, b1] we have |u∗k − u∗∗k | < δ.] Hence
by the Cauchy Criterion for Riemann integrability we are done.

Step #2. If a = a0 < a1 < · · · < an−1 < am = b represent all the possible points
of discontinuity we have, from above, that f is Riemann intgerable on each interval



[ak−1, ak], k = 1, . . . , n. Given ε > 0, find for each k−1, . . . n a partition Pk of [ak−1, ak]
such that ∥∥∥∥∥S(f,Qk)−

∫ ak

ak−1

f

∥∥∥∥∥ < ε

n
whenever Qk ⊃ Pk

for any Riemann sum S(f,Qk). Now if P =
⋃n

k−1Pk then for any partition Q ⊃ P
we can write Qk = {b ∈ Q : ak−1 ≤ b ≤ ak and we can decompose S(f,Q) =∑n

k=1 S(f,Qk) as a sum of Riemann sums over subintervals. We thus have∥∥∥∥∥S(f,Q)−
n∑

k=1

∫ ak

ak−1

f

∥∥∥∥∥ ≤
n∑

k=1

∥∥∥∥∥S(f,Qk)−
∫ ak

ak−1

f

∥∥∥∥∥ < ε.

(b) It is obvious that ‖S(f,P)‖ ≤ S(‖f‖ ,P). If the desired inequality failed to hold,

let ε =
∥∥∥∫ b

a
f
∥∥∥− ∫ b

a
‖f‖, and show this leads to a contradiction using a partition P for

which
∣∣∣S(‖f‖ ,P)−

∫ b

a
‖f‖

∣∣∣ < ε/2 and
∥∥∥S(f,P)−

∥∥∥∫ b

a
f
∥∥∥∥∥∥ < ε/2, and a clever use of

subadditivity of the norm.

2. Define τ : (0, 1)→ R by τ(x) = 1/(x2 − x). Verify this is a bijection and let ϕ1 = τ−1.

Let {tn}∞n=1,{sn}∞n=1 be disjoint sequences of distinct points in (0, 1) (find examples).
Define a ψ : (0, 1)→ (0, 1) \ {tn}∞n=1 by

ψ(t) =


t if t 6∈ {tn, sn}∞n=1

s2n if t = tn

s2n−1 if t = sn.

Verify that ψ is a bijection.

Every element t in (0, 1) ha s a unique representation in binary t = 0.ε1ε2 · · · :=∑∞
k=1 εk/2

k, where each εk ∈ {0, 1} provided we don’t allow sequences which are ulti-
mately constant 1. Let x1, x2, . . . be the enumaration of

(0, 0, 0, . . . ), (1, 1, 1, . . . ),

(0, 1, 1, 1, . . . ),

(0, 0, 1, 1, 1, . . . ), (1, 0, 1, 1, 1, . . . ),

(0, 0, 0, 1, 1, . . . ), (0, 1, 0, 1, 1, . . . ), (1, 0, 0, 1, 1, . . . ), (1, 1, 0, 1, 1, . . . ),

...

the sequence of elements which are ultimately constant 1, as suggested. Define θ :
{0, 1}N → (0, 1) by

θ(ε1, ε2, . . . ) =

{
ψ(0, ε1ε2 . . . ) if (ε1, ε2, . . . ) 6∈ {xn}∞n=1

tn if (ε1, ε2, . . . ) = xn.
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Verify that θ is a bijection so ϕ2 = θ−1 : (0, 1)→ {0, 1}N is a bijection.

Let ϕ = ϕ2◦ϕ1.

3. Suppose Q =
⋂∞

n=1Gn, Gn open. Write Q = {rn}∞n=1. Then each Fn = (R \Gn)∪{rn}
is closed and nowhere dense. (Why?) But then R =

⋃∞
n=1 Fn.

4. (a) On G define a relation

x ∼ y ⇔ there are a < b s.t. x, y ∈ (a, b) ⊂ G

for x, y in G. Verify that this is an equivalence relation. Suppose the equivalence class
[x] is bounded. Then for 0 < ε < sup[x]−inf[x]

2
, we have inf[x] + ε, sup[x] − ε ∈ [x] and

hence (inf[x] + ε, sup[x]− ε) ⊂ [x]. Thus

[x] ⊃
⋃

0<ε<
sup[x]−inf[x]

2

(inf[x] + ε, sup[x]− ε) = (inf[x], sup[x]).

We have [x] ⊂ (inf[x], sup[x]): for if we had y ∈ [x] for any y ≤ inf[x], or y ≥ sup[x],
this would violate the definition of y ∼ x. Thus [x] = (inf[x], sup[x]). An unbounded
equivalence class can be dealt with similarly and will yield a half-infinite interval. The
equivalence classes partition G in a unique manner.

Let Q ∩ G = {rk}∞k=1. For x in G let kx = min{k : qk ∈ [x]}, and write Ikx = [x].
(Also, an axiom of choice argument allows a choice of one qx ∈ Q∩ [x] for each x in G;
write Iqx = [x].) Thus the collection if intervals {Ikx}x∈G (or {Iqx}x∈G) is countable;
enumerate as {Jn}n=1,2,...

Alternate: Let (X, ρ) be a metric space with the property such that each open ball
B(x0, r) = {x ∈ X : ρ(x, x0) < r} is connected, i.e. if open sets U, V ⊂ X satisfy
B(x0, r) ⊂ U ∪ V then U ∩ V 6= ∅. [Exercise: Find a metric space without this
property.] Let G ⊂ X be open. Define an relation on G by

x ∼ y ⇔ there is a connected C with x, y ∈ C ⊂ G.

Then it is straightforward to verify that ∼ is an equivalence relation; transitivity is the
only slightly tricky part. Note that [x] =

⋃
{C : x ∈ C ⊂ G and C is connected} so

[x] is connected (needs verifying!). Moreover, since G is open and all balls are open, it
follows that [x] contains a neighbourhood of each of its points, i.e. is open. We have
G is partitioned uniquely by these open equivalence classes, i.e. G = ·

⋃
V ∈G/∼ V .

If we further assume that X is separable, i.e. it admits a dense sequence {dj}nj=1, then,
as above, we can show that there are, at most, countably many open equivalence classes
V .

It remains to show that open intervals are the only open connected subsets in R.
The proof of the intermediate value theorm of M147 can be adapted to show that
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any interval is connected. Indeed, any open connected set V ⊂ R satisfies the in-
termediate value property: if x < y in V and x < z < y then z ∈ V too; indeed
otherwise {(−∞, z), (z,∞)} forms a disconnection of V . Thus V =

⋃
x<y in V (x, y) =

(inf V, supV ) is an interval.

(b) We have that λ∗(E) ≤ inf{λ(G) : G ⊃ E,G is open}, from σ-subadditivity of
λ∗ and that λ∗(E) ≤ λ∗(G) = λ(G) if E ⊂ G. [Alternatively, inf{λ(G) : G ⊃
E,G is open} represents the infemum taken over covers of E by sequences of pairwise
disjoint open intervals, and hence λ∗(E) ≤ inf{λ(G) : G ⊃ E,G is open} since there
are clearly more covers of E by sequences of open intervals which are not necessarlity
pairwise disjoint.]

Conversely, if {In}∞n=1 is a cover of E by open intervals, then by increasing property
and σ-subadditivity λ∗(E) ≤ λ∗(G) ≤

∑∞
n=1 λ

∗(In) =
∑∞

n=1 `(In), where G =
⋃∞

n=1 In
is open.
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