
Pure Math 450, Assignment 2: Solution Sketch

1. (a) The case λ(E) =∞ is obvious. Otherwise, find for each n an open Gn ⊃ E such
that λ(Gn) < λ∗(E) + 1/n. Let A =

⋂∞
n=1Gn.

(b) Suppose E is measurable. Find measurable sets En so λ(En) < ∞ and E =⋃∞
n=1En (say En = E ∩ (−n, n)). Find open Gn,k ⊃ En so λ(Gn,k) < λ(En) +

1/(k2n). Then Gk =
⋃∞
n=1Gn,k contains E with λ(Gk \ E) < 1/k. To verify this

note that Gk \E =
⋂∞
n=1(Gk \En) ⊂

⋃∞
n=1(Gn,k \En) [the last inclusion requires

verification]. Then let A =
⋂∞
k=1Gk and verify that λ(A \ E) = 0.

If there is any measurable setA ⊃ E for which λ∗(A\E) = 0 then E = A\(A\E) =
A ∩ (R \ (A \ E)) is measurble too.

(c) We verify “ ⇐ ” only. Use part (a) to find measuable A so E ⊂ A ⊂ B and
λ(A) = λ∗(E). Then

λ(B) = λ∗(E) + λ∗(B \ E)

= λ∗(E) +
[
λ∗((B \ E) ∩ A) + λ∗((B \ E) \ A)

]
= λ∗(E) +

[
λ∗(A \ E) + λ∗(B \ A)

]
=
[
λ(A) + λ(B \ A)

]
+ λ∗(A \ E)

= λ(B) + λ∗(A \ E)

so λ∗(A \ E) = 0.

2. (a) If K ⊂ E is compact then

λ(K) + λ∗(E) ≤ λ(K) + λ((a, b) \K)︸ ︷︷ ︸
λ((a, b))

≤ λ∗(E) + λ((a, b) \K).

Indeed (a, b) \K is open and contains (a, b) \ E; thus λ∗(E) ≤ λ((a, b) \K). On
the left take supremum over all such K; on the right take infemum over all such
K (here we should be cautious that if (a, b) \ E ⊂ G ⊂ (a, b) then we cannot
gurantee that (a, b) \G is compact; however [a + ε, b− ε] \G is, take ε→ 0). In
either case we obtain λ∗(E) + λ∗((a, b) \ E).

(b) If E ⊂ (a, b), compare result in (a) with Caratheodory criterion. If E is un-

bounded, write E =
⋃̇∞
n=1En where each En is measurable and bounded. How?

Given ε > 0, for each n find compact Kn ⊂ En so λ(Kn) > λ(En) − ε/2n. Then
for each m, Cm =

⋃m
n=1Kn ⊂ E is compact. Verify that

lim
m→∞

λ(Cm) = lim
m→∞

m∑
n=1

λ(Kn) ≥ lim
m→∞

m∑
n=1

(
λ(En)− ε

2n

)
= λ(E)− ε.

Thus λ∗(E) ≥ λ(E) and we are done. Why?



(c) Use (a), and 1. (c), with B = (a, b) being any interval containing A.

3. (a) Intersection of closed sets is closed.

Say Cα contained a non-empty open interval (a, b). Then (a, b) ⊂ Cn,α for each
n. Each Cn,α is a disjoint union of 2n+1 closed intervals, each of length no greater
than 1/2n+1. Explain. Hence (a, b) must be contained such an interval. For large
enough n this is absurd.

(b) Solution #1: Let In,1, . . . , In,2n denote the open intervals removed from Cn−1,α
to make Cn,α. Each has length α/3n. Then we use De Morgan’s Law to verify

[0, 1] \ Cα = ·
∞⋃
n=0

·
2n⋃
k=1

In,k and hence λ([0, 1] \ Cα) =
∞∑
n=0

α
2n

3n+1
= α.

Thus λ(Cα) = 1− α
Solution #2: Each set Cα,n is a disjoint union of 2n closed intervals, Jn,1, . . . , Jn,2n ,
each of the same length `n. By the definition of the Jn,k’s, we find that the sequece
`0, `1, `2, . . . satifies the recursion

`n+1 =
1

2

(
`n −

α

3n+1

)
, `0 = λ([0, 1]) = 1.

One can check, by induction, that

`n =
1

2n
− α

2

n∑
k=1

1

2n−k3k
, for n = 1, 2, . . .

Hence for n = 1, 2, . . . we have

λ(Cα,n) = 2n`n = 1− α

2

n∑
k=1

2k

3k
= 1− α(1− (2/3)n+1).

Thus we see that limn→∞ λ(Cα,n) = 1−α. We are done once we have the following
result:

Proposition: Let A1 ⊃ A2 ⊃ · · · ∈ L(R) be so λ(A1) <∞. Then

λ

(
∞⋂
n=1

An

)
= lim

n→∞
λ(An).

Proof. Verify first that Am = ·
⋃∞
n=m(An \ An+1)∪̇

⋂∞
n=1An. Thus

λ(Am) =
∞∑
n=m

λ(An \ An+1) + λ

(
∞⋂
n=1

An

)
.

The above sum is the “tail end” of a converging series. Why? Take m→∞. �
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(c) Let A =
⋃∞
m=1C1/m. Verify that λ(A) = 1 and A is of first category. Let B =

[0, 1] \ A.

(d) Let for each n, Jαn,1, . . . , J
α
n,2n+1 denote the component intervals of Cα,n; and

Iαn,1, . . . , I
α
n,2n+1 their open middles of length α

3n+1 [thus Jα0 = [0, 1] and Iα01 =(
1
2
− α

6
, 1
2

+ α
6

)
]. We similarly let Jn,1, . . . , Jn,2n+1 and In,1, . . . , In,2n+1 be such in-

tervals for the “middle third”, i.e. α = 1, Cantor set.

Solution #1: For each n we define ϕn : [0, 1]→ [0, 1] to be the unique piecewise
linear, striclty increasing function such that

(i) ϕn(Jαn,k) = Jn,k for k = 1, . . . , 2n+1, and

(ii) ϕn(Iαm,k) = Im,k for m = 0, 1, . . . , n and k = 1, . . . , 2m+1.

Verify (tediously) that

|ϕn(x)− ϕn(y)| ≤ 1

α
|x− y| for each x, y ∈ [0, 1]

(that 1/α ≥ 1 is helpful).

[At this point we may observe that {ϕn}∞n=1 is equicontinuous (given ε > 0 let
δ = ε

α
), and trivially this family is bounded. Thus by Arzela-Ascoli, there is a

converging sequence from within this set of functions — though not obviously
a subsequece of the sequence (ϕn)∞n=1! (How?) However, it is possible to verify
that the created sequence contains a subsequence which is also a subsequence of
(ϕn)∞n=1. As below, verify that this subsequence converges to a strictly increasing
ϕ on [0, 1] for which ϕ(Cα) = C.]

Note that if y ∈ IαN,k, then for any n ≥ N , ϕn(y) = ϕN(y). If ε > 0 is given, and
x ∈ Cα, then by part (a), there is y ∈ [0, 1] \ Cα such that |x − y| ≤ αε

2
. Then

y ∈ IαN,k for some N . Then if n,m ≥ N we have

|ϕn(x)− ϕm(x)| ≤ |ϕn(x)− ϕN(y)|+ |ϕN(y)− ϕm(x)|
= |ϕn(x)− ϕn(y)|+ |ϕm(y)− ϕm(x)|

≤ 1

α
|x− y|+ 1

α
|x− y| < ε.

Hence the sequence {ϕn}∞n=1 is unifomly Cauchy; since the space (C[0, 1], ‖·‖∞) is
complete, the sequence has a uniform limit ϕ which must be continuous (PMath
351)

We have that ϕ is strictly increasing since if x < y in [0, 1] we have that, by part
(a), there is x < z < y such that z ∈ [0, 1] \Cα. Thus z ∈ IαN,k for some N and k,
whence there is z′ in IαN,k with z′ > z. Thus

ϕ(x) ≤ ϕ(z) = ϕN(z) < ϕN(z′) = ϕ(z′) ≤ ϕ(y).

Thus ϕ is a continuous, increasing map, so it has continuous inverse. Also verify
that ϕ(Cα) = C so ϕ|Cα is a homoemorphism.
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Solution #2: Let Iαn,k = (aαn,k, b
α
n,k) and In,k = (an,k, bn,k) for all n, and k =

1, . . . , 2n. Then, since by (a), [0, 1] \ Cα =
⋃∞
n=0

⋃2n

k=1 I
α
n,k is dense in [0, 1], we

see that Eα = {aαn,k, bαn,k : k = 1, . . . , 2n, n = 1, 2, . . . } (E=“endpoint set”), which
is clearly in Cα, is dense in Cα. Similarly E = {an,k, bn,k : k = 1, . . . , 2n, n =
1, 2, . . . } is dense in C. Define a map ϕ0 : Eα → E by ϕ0(x

α
n,k) = xn,k where x is

either of the symbols a or b. We see that ϕ0 is strictly increasing and that

|ϕ0(x)− ϕ0(y)| ≤ 1

α
|x− y|

for x, y in E; this inequality can be checked similarly to the inequality in the
solution above. Thus ϕ0 is Lipschitz, hence uniformly contnuous on a dense
subset of Cα. Thus there exists a unique (uniformly) continuous ϕ : Cα → C
such that ϕ|Eα = ϕ0 (PMath 351). Also if x < y in Cα, use density of Eα and
an induction argument to find sequences x < · · · < x2 < x1 < y1 < y2 < · · · < y
with xi, yi ∈ Eα and |x− xn|, |y − yn| < 1/n. Thus

ϕ(x) = lim
n→∞

ϕ0(xn) < lim
n→∞

ϕ0(yn) = ϕ(y).

Thus ϕ : Cα → C is continuous and injective. Moreover ϕ(Cα) is a compact,
hance closed subset of C, containg the dense set E, hence ϕ is surjective. By a
PMath 351 result, a continuouis bijection between compact sets is necessarily a
homeomorphism.

Solution #3: List the component interval of Cn in the following manner:

Cn = ·
⋃

a∈{0,2}n
Ia where Ia = {t ∈ [0, 1] : t = 0.a1 . . . antn+1tn+2 . . . (ternary)}.

Then we know from class that t ∈ C if and only if t = 0.t1t2 . . . (ternary) with
ti ∈ {0, 2}. Moreover, this sequence of ti’s is uniquely detemined by

t = 0.t1t2 . . . ⇔ t ∈
∞⋂
n=1

It(n) where t(n) = {t1, . . . , tn} ∈ {0, 2}n.

Now, fix 0 < α < 1, and denote the nth set in the constuction of Cα by Cα,n.
There are 2n intervals, Ja, a ∈ {0, 2}n such that Cα,n = ·

⋃
a∈{0,2}n Ja. Note that

the indices are chosen to satisfy sup Ja < inf Jb if and only if a ≺ b where ≺ is
the lexicographical ordering on strings in {0, 2}n, i.e. (0, . . . , 0) ≺ (0, . . . , 0, 2) ≺
· · · ≺ (2, . . . , 2). Also, given a ∈ {0, 2}n, J(a1,...,an,0) and J(a1,...,an,2) are the distinct
subintervals of Ja in the description of Cα,n+1. We note that length(Ja) ≤ 1/2n if
a ∈ {0, 2}n, and each Ja is closed. Hence given a ∈ {0, 2}N,

⋂∞
n=1 Ja(n) = {xa} for

a unique element xa (a(n) = (a1, . . . , an), nth truncation of a).

We let ϕ : C → Cα by ϕ(t) = xt̃, where t̃ = (t1, t2, . . . ) ∈ {0, 2}N is given by
t = 0.t1t2 . . . (ternary, no 1’s). The properties discussed about the intervals Ja
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above tell us that ϕ is stricly increasing, and injective. It is also surjective as
Cα =

⋂∞
n=1Cα,n. If we can verify the continuity of ϕ, then it is automatically a

homeomorphism (PMath 351). Let ε > 0 be given. Find n so 1/2n < ε. Now if
s, t ∈ C satisfy |s− t| < 1/3n, then they must live in the same interval Ia in Cn.
Thus xs̃ and xt̃ live in the same interval Ja in Cα,n (in fact s̃(n) = t̃(n) = a). Hence
|ϕ(s)− ϕ(t)| = |xs̃ − xt̃| ≤ 1/2n < ε. Hence (uniform) continuity of ϕ holds.

4. (a) Clearly |L(R)| ≤ |P(R)| = 2c. On the other hand we have that if C is the usual
middle thirds Cantor set than P(C) ⊂ N (R) ⊂ L(R) [N (R) is the family of null
sets]. Hence 2c = |P(R)| = |P(C) ≤ |P(R)|. The Cantor-Bernstein Theorem tells
us that 2c = |L(R)|.
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