Pure Math 450, Assignment 2: Solution Sketch

- 1. (a) The case $\lambda(E) = \infty$ is obvious. Otherwise, find for each n an open $G_n \supset E$ such that $\lambda(G_n) < \lambda^*(E) + 1/n$. Let $A = \bigcap_{n=1}^{\infty} G_n$.
 - (b) Suppose *E* is measurable. Find measurable sets E_n so $\lambda(E_n) < \infty$ and $E = \bigcup_{n=1}^{\infty} E_n$ (say $E_n = E \cap (-n, n)$). Find open $G_{n,k} \supset E_n$ so $\lambda(G_{n,k}) < \lambda(E_n) + 1/(k2^n)$. Then $G_k = \bigcup_{n=1}^{\infty} G_{n,k}$ contains *E* with $\lambda(G_k \setminus E) < 1/k$. To verify this note that $G_k \setminus E = \bigcap_{n=1}^{\infty} (G_k \setminus E_n) \subset \bigcup_{n=1}^{\infty} (G_{n,k} \setminus E_n)$ [the last inclusion requires verification]. Then let $A = \bigcap_{k=1}^{\infty} G_k$ and verify that $\lambda(A \setminus E) = 0$. If there is any measurable set $A \supset E$ for which $\lambda^*(A \setminus E) = 0$ then $E = A \setminus (A \setminus E) = A \cap (\mathbb{R} \setminus (A \setminus E))$ is measurable too.
 - (c) We verify " \Leftarrow " only. Use part (a) to find measuable A so $E \subset A \subset B$ and $\lambda(A) = \lambda^*(E)$. Then

$$\lambda(B) = \lambda^*(E) + \lambda^*(B \setminus E)$$

= $\lambda^*(E) + [\lambda^*((B \setminus E) \cap A) + \lambda^*((B \setminus E) \setminus A)]$
= $\lambda^*(E) + [\lambda^*(A \setminus E) + \lambda^*(B \setminus A)]$
= $[\lambda(A) + \lambda(B \setminus A)] + \lambda^*(A \setminus E)$
= $\lambda(B) + \lambda^*(A \setminus E)$

so $\lambda^*(A \setminus E) = 0.$

2. (a) If $K \subset E$ is compact then

$$\lambda(K) + \lambda^*(E) \le \underbrace{\lambda(K) + \lambda((a, b) \setminus K)}_{\lambda((a, b))} \le \lambda_*(E) + \lambda((a, b) \setminus K).$$

Indeed $(a, b) \setminus K$ is open and contains $(a, b) \setminus E$; thus $\lambda^*(E) \leq \lambda((a, b) \setminus K)$. On the left take supremum over all such K; on the right take infemum over all such K (here we should be cautious that if $(a, b) \setminus E \subset G \subset (a, b)$ then we cannot gurantee that $(a, b) \setminus G$ is compact; however $[a + \varepsilon, b - \varepsilon] \setminus G$ is, take $\varepsilon \to 0$). In either case we obtain $\lambda_*(E) + \lambda^*((a, b) \setminus E)$.

(b) If $E \subset (a, b)$, compare result in (a) with Caratheodory criterion. If E is unbounded, write $E = \bigcup_{n=1}^{\infty} E_n$ where each E_n is measurable and bounded. How? Given $\varepsilon > 0$, for each n find compact $K_n \subset E_n$ so $\lambda(K_n) > \lambda(E_n) - \varepsilon/2^n$. Then for each $m, C_m = \bigcup_{n=1}^m K_n \subset E$ is compact. Verify that

$$\lim_{m \to \infty} \lambda(C_m) = \lim_{m \to \infty} \sum_{n=1}^m \lambda(K_n) \ge \lim_{m \to \infty} \sum_{n=1}^m \left(\lambda(E_n) - \frac{\varepsilon}{2^n} \right) = \lambda(E) - \varepsilon.$$

Thus $\lambda_*(E) \ge \lambda(E)$ and we are done. Why?

- (c) Use (a), and 1. (c), with B = (a, b) being any interval containing A.
- 3. (a) Intersection of closed sets is closed.

Say C_{α} contained a non-empty open interval (a, b). Then $(a, b) \subset C_{n,\alpha}$ for each n. Each $C_{n,\alpha}$ is a disjoint union of 2^{n+1} closed intervals, each of length no greater than $1/2^{n+1}$. Explain. Hence (a, b) must be contained such an interval. For large enough n this is absurd.

(b) Solution #1: Let $I_{n,1}, \ldots, I_{n,2^n}$ denote the open intervals removed from $C_{n-1,\alpha}$ to make $C_{n,\alpha}$. Each has length $\alpha/3^n$. Then we use De Morgan's Law to verify

$$[0,1] \setminus C_{\alpha} = \bigcup_{n=0}^{\infty} \bigcup_{k=1}^{2^n} I_{n,k} \text{ and hence } \lambda([0,1] \setminus C_{\alpha}) = \sum_{n=0}^{\infty} \alpha \frac{2^n}{3^{n+1}} = \alpha$$

Thus $\lambda(C_{\alpha}) = 1 - \alpha$

Solution #2: Each set $C_{\alpha,n}$ is a disjoint union of 2^n closed intervals, $J_{n,1}, \ldots, J_{n,2^n}$, each of the same length ℓ_n . By the definition of the $J_{n,k}$'s, we find that the sequece $\ell_0, \ell_1, \ell_2, \ldots$ satisfies the recursion

$$\ell_{n+1} = \frac{1}{2} \left(\ell_n - \frac{\alpha}{3^{n+1}} \right), \quad \ell_0 = \lambda([0,1]) = 1.$$

One can check, by induction, that

$$\ell_n = \frac{1}{2^n} - \frac{\alpha}{2} \sum_{k=1}^n \frac{1}{2^{n-k}3^k}, \text{ for } n = 1, 2, \dots$$

Hence for $n = 1, 2, \ldots$ we have

$$\lambda(C_{\alpha,n}) = 2^n \ell_n = 1 - \frac{\alpha}{2} \sum_{k=1}^n \frac{2^k}{3^k} = 1 - \alpha (1 - (2/3)^{n+1}).$$

Thus we see that $\lim_{n\to\infty} \lambda(C_{\alpha,n}) = 1 - \alpha$. We are done once we have the following result:

Proposition: Let $A_1 \supset A_2 \supset \cdots \in \mathcal{L}(\mathbb{R})$ be so $\lambda(A_1) < \infty$. Then

$$\lambda\left(\bigcap_{n=1}^{\infty}A_n\right) = \lim_{n \to \infty}\lambda(A_n).$$

Proof. Verify first that $A_m = \bigcup_{n=m}^{\infty} (A_n \setminus A_{n+1}) \dot{\cup} \bigcap_{n=1}^{\infty} A_n$. Thus

$$\lambda(A_m) = \sum_{n=m}^{\infty} \lambda(A_n \setminus A_{n+1}) + \lambda\left(\bigcap_{n=1}^{\infty} A_n\right).$$

The above sum is the "tail end" of a converging series. Why? Take $m \to \infty$.

- (c) Let $A = \bigcup_{m=1}^{\infty} C_{1/m}$. Verify that $\lambda(A) = 1$ and A is of first category. Let $B = [0,1] \setminus A$.
- (d) Let for each $n, J_{n,1}^{\alpha}, \ldots, J_{n,2^{n+1}}^{\alpha}$ denote the component intervals of $C_{\alpha,n}$; and $I_{n,1}^{\alpha}, \ldots, I_{n,2^{n+1}}^{\alpha}$ their open middles of length $\frac{\alpha}{3^{n+1}}$ [thus $J_0^{\alpha} = [0,1]$ and $I_{01}^{\alpha} = (\frac{1}{2} \frac{\alpha}{6}, \frac{1}{2} + \frac{\alpha}{6})$]. We similarly let $J_{n,1}, \ldots, J_{n,2^{n+1}}$ and $I_{n,1}, \ldots, I_{n,2^{n+1}}$ be such intervals for the "middle third", i.e. $\alpha = 1$, Cantor set.

Solution #1: For each n we define $\varphi_n : [0, 1] \to [0, 1]$ to be the unique piecewise linear, strictly increasing function such that

(i) $\varphi_n(J_{n,k}^{\alpha}) = J_{n,k}$ for $k = 1, ..., 2^{n+1}$, and

(ii) $\varphi_n(I_{m,k}^{\alpha}) = I_{m,k}$ for $m = 0, 1, \dots, n$ and $k = 1, \dots, 2^{m+1}$.

Verify (tediously) that

$$|\varphi_n(x) - \varphi_n(y)| \le \frac{1}{\alpha} |x - y|$$
 for each $x, y \in [0, 1]$

(that $1/\alpha \ge 1$ is helpful).

[At this point we may observe that $\{\varphi_n\}_{n=1}^{\infty}$ is equicontinuous (given $\varepsilon > 0$ let $\delta = \frac{\varepsilon}{\alpha}$), and trivially this family is bounded. Thus by Arzela-Ascoli, there is a converging sequence from within this set of functions — though not obviously a subsequece of the sequence $(\varphi_n)_{n=1}^{\infty}$! (How?) However, it is possible to verify that the created sequence contains a subsequence which is also a subsequence of $(\varphi_n)_{n=1}^{\infty}$. As below, verify that this subsequence converges to a strictly increasing φ on [0, 1] for which $\varphi(C_{\alpha}) = C$.]

Note that if $y \in I_{N,k}^{\alpha}$, then for any $n \geq N$, $\varphi_n(y) = \varphi_N(y)$. If $\varepsilon > 0$ is given, and $x \in C_{\alpha}$, then by part (a), there is $y \in [0,1] \setminus C_{\alpha}$ such that $|x - y| \leq \frac{\alpha \varepsilon}{2}$. Then $y \in I_{N,k}^{\alpha}$ for some N. Then if $n, m \geq N$ we have

$$\begin{aligned} |\varphi_n(x) - \varphi_m(x)| &\leq |\varphi_n(x) - \varphi_N(y)| + |\varphi_N(y) - \varphi_m(x)| \\ &= |\varphi_n(x) - \varphi_n(y)| + |\varphi_m(y) - \varphi_m(x)| \\ &\leq \frac{1}{\alpha} |x - y| + \frac{1}{\alpha} |x - y| < \varepsilon. \end{aligned}$$

Hence the sequence $\{\varphi_n\}_{n=1}^{\infty}$ is uniformly Cauchy; since the space $(\mathcal{C}[0,1], \|\cdot\|_{\infty})$ is complete, the sequence has a uniform limit φ which must be continuous (PMath 351)

We have that φ is strictly increasing since if x < y in [0, 1] we have that, by part (a), there is x < z < y such that $z \in [0, 1] \setminus C_{\alpha}$. Thus $z \in I_{N,k}^{\alpha}$ for some N and k, whence there is z' in $I_{N,k}^{\alpha}$ with z' > z. Thus

$$\varphi(x) \le \varphi(z) = \varphi_N(z) < \varphi_N(z') = \varphi(z') \le \varphi(y).$$

Thus φ is a continuous, increasing map, so it has continuous inverse. Also verify that $\varphi(C_{\alpha}) = C$ so $\varphi|_{C_{\alpha}}$ is a homoemorphism.

Solution #2: Let $I_{n,k}^{\alpha} = (a_{n,k}^{\alpha}, b_{n,k}^{\alpha})$ and $I_{n,k} = (a_{n,k}, b_{n,k})$ for all n, and $k = 1, \ldots, 2^n$. Then, since by (a), $[0,1] \setminus C_{\alpha} = \bigcup_{n=0}^{\infty} \bigcup_{k=1}^{2^n} I_{n,k}^{\alpha}$ is dense in [0,1], we see that $E_{\alpha} = \{a_{n,k}^{\alpha}, b_{n,k}^{\alpha} : k = 1, \ldots, 2^n, n = 1, 2, \ldots\}$ (E="endpoint set"), which is clearly in C_{α} , is dense in C_{α} . Similarly $E = \{a_{n,k}, b_{n,k} : k = 1, \ldots, 2^n, n = 1, 2, \ldots\}$ is dense in C. Define a map $\varphi_0 : E_{\alpha} \to E$ by $\varphi_0(x_{n,k}^{\alpha}) = x_{n,k}$ where x is either of the symbols a or b. We see that φ_0 is strictly increasing and that

$$|\varphi_0(x) - \varphi_0(y)| \le \frac{1}{\alpha}|x - y|$$

for x, y in E; this inequality can be checked similarly to the inequality in the solution above. Thus φ_0 is Lipschitz, hence uniformly continuous on a dense subset of C_{α} . Thus there exists a unique (uniformly) continuous $\varphi : C_{\alpha} \to C$ such that $\varphi|_{E_{\alpha}} = \varphi_0$ (PMath 351). Also if x < y in C_{α} , use density of E_{α} and an induction argument to find sequences $x < \cdots < x_2 < x_1 < y_1 < y_2 < \cdots < y$ with $x_i, y_i \in E_{\alpha}$ and $|x - x_n|, |y - y_n| < 1/n$. Thus

$$\varphi(x) = \lim_{n \to \infty} \varphi_0(x_n) < \lim_{n \to \infty} \varphi_0(y_n) = \varphi(y).$$

Thus $\varphi : C_{\alpha} \to C$ is continuous and injective. Moreover $\varphi(C_{\alpha})$ is a compact, hance closed subset of C, containing the dense set E, hence φ is surjective. By a PMath 351 result, a continuous bijection between compact sets is necessarily a homeomorphism.

Solution #3: List the component interval of C_n in the following manner:

$$C_n = \bigcup_{a \in \{0,2\}^n} I_a \text{ where } I_a = \{t \in [0,1] : t = 0.a_1 \dots a_n t_{n+1} t_{n+2} \dots \text{ (ternary)}\}.$$

Then we know from class that $t \in C$ if and only if $t = 0.t_1t_2...$ (ternary) with $t_i \in \{0, 2\}$. Moreover, this sequence of t_i 's is uniquely detemined by

$$t = 0.t_1 t_2 \dots \Leftrightarrow t \in \bigcap_{n=1}^{\infty} I_{t_{(n)}} \text{ where } t_{(n)} = \{t_1, \dots, t_n\} \in \{0, 2\}^n.$$

Now, fix $0 < \alpha < 1$, and denote the *n*th set in the constuction of C_{α} by $C_{\alpha,n}$. There are 2^n intervals, $J_a, a \in \{0,2\}^n$ such that $C_{\alpha,n} = \bigcup_{a \in \{0,2\}^n} J_a$. Note that the indices are chosen to satisfy $\sup J_a < \inf J_b$ if and only if $a \prec b$ where \prec is the lexicographical ordering on strings in $\{0,2\}^n$, i.e. $(0,\ldots,0) \prec (0,\ldots,0,2) \prec$ $\cdots \prec (2,\ldots,2)$. Also, given $a \in \{0,2\}^n$, $J_{(a_1,\ldots,a_n,0)}$ and $J_{(a_1,\ldots,a_n,2)}$ are the distinct subintervals of J_a in the description of $C_{\alpha,n+1}$. We note that length $(J_a) \leq 1/2^n$ if $a \in \{0,2\}^n$, and each J_a is closed. Hence given $a \in \{0,2\}^{\mathbb{N}}$, $\bigcap_{n=1}^{\infty} J_{a_{(n)}} = \{x_a\}$ for a unique element x_a $(a_{(n)} = (a_1,\ldots,a_n)$, *n*th truncation of a).

We let $\varphi : C \to C_{\alpha}$ by $\varphi(t) = x_{\tilde{t}}$, where $\tilde{t} = (t_1, t_2, \dots) \in \{0, 2\}^{\mathbb{N}}$ is given by $t = 0.t_1t_2...$ (ternary, no 1's). The properties discussed about the intervals J_a

above tell us that φ is stricly increasing, and injective. It is also surjective as $C_{\alpha} = \bigcap_{n=1}^{\infty} C_{\alpha,n}$. If we can verify the continuity of φ , then it is automatically a homeomorphism (PMath 351). Let $\varepsilon > 0$ be given. Find n so $1/2^n < \varepsilon$. Now if $s, t \in C$ satisfy $|s - t| < 1/3^n$, then they must live in the same interval I_a in C_n . Thus $x_{\tilde{s}}$ and $x_{\tilde{t}}$ live in the same interval J_a in $C_{\alpha,n}$ (in fact $\tilde{s}_{(n)} = \tilde{t}_{(n)} = a$). Hence $|\varphi(s) - \varphi(t)| = |x_{\tilde{s}} - x_{\tilde{t}}| \le 1/2^n < \varepsilon$. Hence (uniform) continuity of φ holds.

4. (a) Clearly $|\mathcal{L}(\mathbb{R})| \leq |\mathcal{P}(\mathbb{R})| = 2^c$. On the other hand we have that if C is the usual middle thirds Cantor set than $\mathcal{P}(C) \subset \mathcal{N}(\mathbb{R}) \subset \mathcal{L}(\mathbb{R})$ [$\mathcal{N}(\mathbb{R})$ is the family of null sets]. Hence $2^c = |\mathcal{P}(\mathbb{R})| = |\mathcal{P}(C) \leq |\mathcal{P}(\mathbb{R})|$. The Cantor-Bernstein Theorem tells us that $2^c = |\mathcal{L}(\mathbb{R})|$.