
Pure Math 450, Assignment 3: Solution Sketch

1. Let a > 0 be so A ⊂ (−a, a). Define and equivalence relation on A by

x ∼ y ⇔ x− y ∈ Q.

Let E ⊂ A be a set of representative, one from each equivalence class. If {qn}∞n=1 =
(−2a, 2a) ∩Q, then it is easily verified that

A ⊂ ·
∞⋃
n=1

(qn + E) ⊂ (−3a, 3a).

It can be shown, just as in the proof in class, that E is not measurable; i.e. it is not a
null set, nor a measurable non-null set.

2. (a) Draw a pretty picture with formula:

ϕ|G3 =
1

8
χ(1/27,2/27) +

1

4
χ(1/9,2/9) +

3

8
χ(7/27,8/27) +

1

2
χ(1/2,2/3)

+
5

8
χ(19/27,20/27) +

3

4
χ(7/9,8/9) +

7

8
χ(25/27,26/27).

The graph should look like a staircase. It appears this function is non-decreasing,
but constant on each interval of G.

(b) Solution #1. We have that that ϕ is uniformly continuous on G: the definition
with ε > 1/2n will be satisfied with δ = 1/3n. Indeed, if x = 0.x1x2 · · · < y =
0.y1y2 . . . in G (ternary expansions) we let k = min{i : xi 6= yi}. If y − x < 1/3n

then either k > n; or k ≤ n with yk − xk = 1, yi = 0 and xi = 2 for k < i ≤ n
(why?). Verify in the first case that 0 ≤ ϕ(y)−ϕ(x) <

∑∞
i=n+1 1/2i = 1/2n; while

in the second 0 ≤ ϕ(y)− ϕ(x) ≤ 1/2k −
∑n

i=k+1 1/2i = 1/2n.

Since G is dense in [0, 1], ϕ extends uniquely to a continuous function on [0, 1],
by a result from PM351. Call this extension ϕ.

Solution #2. If c ∈ C, write c =
∑∞

k=1 εk/3
k (uniquely) where εk ∈ {0, 2} for each

k. Then verify that limx∈G,x→c ϕ(x) =
∑∞

k=1 εk/2
k, which we define as ϕ(c). Check

this seperately at “endpoints”: c = 0.ε1 . . . εn−11000 · · · = 0.ε1 . . . εn−10222 . . . , or
c = 0.ε1 . . . εn−11222 · · · = 0.ε1 . . . εn−12000 . . . (εi ∈ {0, 2} for 1 ≤ i ≤ n−1); and
also at those points in C which admit only one ternary representation.

Solution #2’. Define ϕ on C as above. Verify that ϕ : [0, 1] = C ∪ G → [0, 1]
is non-decreasing [ideas from (c), below, will suffice] and that ϕ(C) = [0, 1] (use
that every element in [0, 1] can be represented in binary expansion). Hence ϕ is
non-decreasing and surjective. Verify that this implies that ϕ is continuous.

Solution #3. Define a continuous function fn : [0, 1] → [0, 1] by fn|Gn = ϕ|Gn

and so the graph of fn on each interval in Cn is a straight line segement. Verify
that ‖fn − fn+1‖∞ ≤ 1/2n. Hence it follows that (fn)∞n=1 is uniformly Cauchy,
and thus converges to a continuous function f . Since f |G = ϕ, we see that f is
the desired extension and we may write f = ϕ on [0, 1].



(c) Since x 7→ x is strictly increasing, it suffices to verify that ϕ is non-decreasing.
Verify directly from the fomula for ϕ that if x < y in G, then ϕ(x) < ϕ(y).
Now if x < y in [0, 1] find sequences (xn)∞n=1, (yn)∞n=1 ⊂ G such that limn→∞ xn =
x and limn→∞ yn = y. Then ϕ(x) = limn→∞ ϕ(xn) ≤ limn→∞ ϕ(yn) = ϕ(y).
[Alternatively, using #2, above, let x = 0.x1x2 · · · < y = 0.y1y2 . . . (ternary
representations) in [0, 1], and let k = min{n : yn > xn}. If xn = 1 = yn for
some n < k, ϕ(x) = ϕ(y) (why?); otherwise calculate ϕ(x) and ϕ(y) to see that
ϕ(x) < ϕ(y).]

Thus ψ(x) = ϕ(x)+x is a bijective continuous function from the compact set [0, 1]
onto [0, 2]. By a result from PM351, ψ is a homeomorphism. Thus it follows that
ψ(G) is open and dense in [0, 2], and hence ψ(C) is closed and nowhere dense.
Moreover, just as we can compute that λ(G) = 1 (in Assignment #2), we can
compute that λ(ψ(G)) = 1. Hence it follows λ(ψ(C)) = 1 too.

(d) Let h : R → R be any continuous function for which h|[0,2] = ψ−1. Let E be a
non-measurable subset in ψ(C) (whose existence is given by q. 1, above]. Then
check that f = χψ−1(E) is measurable and (f ◦h)−1

(
(1/2,∞)

)
= E, so f ◦h is not

measurbale.

3. (a) Suppose f is Riemann integrable, and ε > 0 be given. We have Cauchy Criterion
for Riemann sums: There is a partition P for which |S(f,Q) − S(f,R)| < ε/3
wheneverQ,R ⊃ Pε. Find specific Riemann sums Su(f,P) and S`(f,P) for which
|U(f,P)−Su(f,P)| < ε/3 and |L(f,P)−S`(f,P)| < ε/3 (why is this possible?).
Then we have U(f,P)− L(f,P) < ε.

To see the converse, verify that for any partitions P ,Q of [a, b] we have

L(f,P) ≤ L(f,P ∪Q) ≤ U(f,P ∪Q) ≤ U(f,Q); similarly L(f,Q) ≤ U(f,P).

Let ε > 0 be given. If there is a partition P for which U(f,P) − L(f,P) < ε/2,
then for partitions P ,Q with Q,R ⊃ P we have for any Riemann sums

L(f,Q) ≤ S(f,Q) ≤ U(f,Q) and L(f,R) ≤ S(f,R) ≤ U(f,R).

This, combined with the inequalities three lines above yeilds |S(f,P)−S(f,Q)| <
ε. Draw a diagram of a real line segment to see why.

(b) Verify that for each n, the definition of continuity fails for f at x ∈ En. Indeed,
try this with ε = 1/(2n). On the other hand, if f is not continuous at x, the
definition of continuity fails for some ε > 0. Find n > 1/ε and see that x ∈ En. It
follows that E is exactly the set of points in [a, b] where f fails to be continuous.

(c) Let n be fixed, and ε > 0. Let, from (a), P = {a = x0 < x1 < · · · < xm = b} be
so U(f,P)−L(f,P) < ε/n. Let Ii = (xi−1, xi) for i = 1, . . . ,m. Then verify that

1

n

∑
Ii∩En 6=∅

`(Ii) ≤
∑

Ii∩En 6=∅

(Mi(f,P)−mi(f,P))(xi−xi−1) ≤ U(f,P)−L(f,P) <
ε

n

2



from which it follows that En can be covered by a finite set (of endpoints) and
a family of intervals the sum of whose lengths is less than ε. It follows that
λ∗(En) < ε. As ε is arbitrary each En is a null set; the countable union of null
sets is null.

(d) Find a sequence of Riemann sums
(
S(f,Pn)

)∞
n=1

with partitions Pn = {a = s0 <

s1 < · · · < sm(n) = b} such that limn→∞ S(f,Pn) =
∫ b
a
f (Riemann integral of f).

Write

S(f,Pn) =

m(n)∑
k=1

f(x∗n,k)(xn,k − xn,k−1).

Define for each n the measurable simple function

fn =

m(n)∑
k=1

f(x∗n,k)χ[xn,k−1,xn,k).

Verify that for each x ∈ [a, b] \ E that limn→∞ fn(x) = f(x). (This requires (c),
above.) Then, if M > 0 is such that supx∈[a,b] |f(x)| ≤M , we have that |fn| ≤M
too. Thus the L.D.C.T. is satisfied, with the constant function M serving as an
integrable majorant. Hence we get that f is Lebesgue integrable with Lebesgue
integral ∫

[a,b]

f = lim
n→∞

∫
[a,b]

fn = lim
n→∞

S(f,Pn) =

∫ b

a

f.

Note: We can equally replace f by f + M . Then we can use L(f,Pn)’s in place
of S(f,Pn)’s above and their corresponding simple functions. We should justify

that limn→∞ L(f,Pn) =
∫ b
a
f . Then use M.C.T. in place of L.D.C.T.

4. (a) Choose sequences a < · · · < a2 < a1 < b1 < b2 < . . . b so a = limn→∞ an
and b = limn→∞ bn. Let fn = fχ[an,bn]. Then f1 ≤ f2 ≤ . . . on (a, b) and
f = limn→∞ fn. We have using the definition of improper Rieman integration,
then q. 3, a proposition we proved before M.C.T., then M.C.T. that∫ b

a

f = lim
n→∞

∫ bn

an

f = lim
n→∞

∫
[an,bn]

f = lim
n→∞

∫
(a,b)

fn =

∫
(a,b)

f.

In particular f is the limit of integrable, hence measurable functions, hence mea-
surable; and

∫
(a,b)

f =
∫ b
a
f <∞; so f is integrable.

(b) It is possible to be improperly Lebesgue integrable with
∫
(a,b)
|f | =∞. For example

let

f =
∞∑
n=1

(−1)nnχ[1/(n+1),1/n) on (0, 1)

3



Observe that∫ 1

x

f = (−1)d1/xe−1(d1/xe − 1)

(
1

d1/xe − 1
− x
)

+

d1/xe−1∑
n=1

(−1)n
1

n+ 1

which converges as x→ 0+ (why?). However,

∫ 1

x

|f | = (d1/xe − 1)

(
1

d1/xe − 1
− x
)

+

d1/xe−1∑
n=1

1

n+ 1

which grows without bound as x→ 0+. It follows by procedure of (a), above that∫
(0,1)
|f | =∞.

Another example: f(x) =
sinx

x
on (0,∞), or g(x) =

sin(1/x)

x
on (0, 1). These

require careful estimates to verify improper Riemann integrability, but failure of
Lebesgue integrability.
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