
Pure Math 450, Assignment 4: Solution Sketch

1. (a) First suppose f ≥ 0 a.e. By a lemma, following M.C.T., we have a sequence of
simple functions with ϕn ≤ f and limn→∞ ϕn = f a.e. Thus limn→∞ |ϕn−f |p = 0
a.e. and |ϕn − f |p ≤ 2p|f |p a.e. (Why?) Then by L.D.C.T.

‖ϕn − f‖p =

(∫ b

a

|ϕn − f |p
)1/p

n→∞−→ 0.

Thus for some n, ‖ϕn − f‖p < ε. For general f write f = f+− f− a.e.; then deal
with positive parts individually and appeal to Minkowski’s inequality.

(b) Consider first ϕ = χE, where E ⊂ [a, b] is measurable. Find a cover of E by open
intervals {In}∞n=1 so λ(E) + (ε/2)p >

∑∞
n=1 λ(In), then find m so

∑∞
n=m+1 λ(In) <

(ε/2)p. Let J1 = I1 ∩ [a, b], J2 = (I2 \ I1)∩ [a, b], . . . Jm = (Im \
⋃n−1
n=1 In)∩ [a, b], so

Ji ∩ Jj = ∅ for i 6= j and
⋃n
n=1 Jn =

⋃n
n=1 In. Now

λ

(
E \

m⋃
n=1

Jn

)
≤ λ

(
∞⋃

n=m+1

Jn

)
< (ε/2)p

(why?), and

m∑
n=1

λ(Jn \ E) = λ

(
m⋃
n=1

In \ E

)
≤ λ

(
∞⋃
n=1

In \ E

)
< (ε/2)p

(why?). Then verify that∥∥∥∥∥
m∑
n=1

χJn − χE

∥∥∥∥∥
p

=

∥∥∥∥∥
m∑
n=1

(χJn − χE∩Jn)− χE\⋃m
n=1 Jn

∥∥∥∥∥
p

=

∥∥∥∥∥
m∑
n=1

χJn\E

∥∥∥∥∥
p

+
∥∥χE\⋃m

n=1 Jn

∥∥
p

=

(∫ b

a

∣∣∣∣∣
m∑
n=1

χJn\E

∣∣∣∣∣
p)1/p

+

(∫ b

a

|χE\⋃m
n=1 Jn

|p
)1/p

=

(
m∑
n=1

λ(Jn \ E)

)1/p

+ λ

(
E \

m⋃
n=1

Jn

)1/p

< ε.

Now if ϕ =
∑n

i=1 aiχEi
, with ai 6= 0 for any i, we can find step function ψi so

‖ψi − χEi
‖p < ε/|ai|. Then ψ = ψ1+· · ·+ψn is a step function with ‖ψ − ϕ‖p < ε.

(c) Write ψ =
∑m

j=1 bjχIj where bj 6= 0 for each j. For each j find hj ∈ C[a, b] such that

0 ≤ hj ≤ 1, supp(hj) ⊂ Ij = [cj, dj] and hj(t) = 1 for t in [cj + (ε/|bj|)p/2, dj −



(ε/|bj|)p/2]. (Each hj can be chosen to be piecewise affine; draw a picture to see
why.) Then ∥∥hj − χIj∥∥p ≤ ε

|bj|
(Draw a picture to see how to make this estimate.) Let h = b1h1 + · · ·+ bnhn and
an application of Minkowski’s inequality establishes ‖h− ψ‖p < ε.

Supplemental: on a.e. convergence. Suppose that E ⊂ [a, b] is measurable.
We find, as in the solution to A2 Q1(b), openGn = ·

⋃∞
j=1(cj,n, dj,n) so E ⊂ Gn and

λ(Gn) < λ(E)+ 1
n
; we may also suppose Gn ⊃ Gn+1 (why?). Recall from A2 Q2(b)

that A =
⋂∞
n=1Gn satisfies λ(A\E) = 0 so χA = χE a.e. Let ψn =

∑n
j=1 χ(cj,n,dj,n).

Then limn→∞ ψn = χA pointwise (why?). Now if hn is built as above, for choice
ε = `n

n
, where `n = min{cj,n − dj,n : j = 1, . . . , n and (cj,n, dj,n) 6= ∅}, bj = 1 and

p = 1. We find that ‖hn‖∞ ≤ 1 and limn→∞ hn = limn→∞ ψn = χA pointwise
(why?). Hence limn→∞ hn = χE a.e.

Now suppose that ϕ = χE1−χE2 where E1 and E2 are measurable with E1∩E2 =
∅. Find for k = 1, 2 a sequence of continuous functions (hk,n)∞n=1 so ‖hk,n‖∞ ≤ 1
and limn→∞ hk,n = χEk

a.e. Then hn = h1,n−h2,n defines a sequence of continuous
functions satisfying ‖hn‖∞ ≤ 1 and limn→∞ hn = ϕ a.e.

This is used with ϕ = sgn◦f in the L1-functional Theorem, in class.

(d) If h ∈ C[a, b] we have

‖h‖p
p =

∫ b

a

|h(t)|pdt ≤
∫ b

a

‖h‖u
pdt = ‖h‖pu (b− a)

so ‖h‖p ≤ (b− a)1/p ‖h‖u. [An identical argument shows L∞[a, b] ⊂ Lp[a, b], with
the same norm inequality.]

If h 6= 0, let t0 be so |h(t0)| > 0 and find δ > 0 be so |t − t0| < δ implies
|h(t)| > |h(t0)|/2. W.l.o.g. we can assume t0 ∈ (a, b) and (t0 − δ, t0 + δ) ⊂ [a, b]
(why?). Then

‖h‖p
p =

∫ b

a

|h|p ≥
∫ t0+δ

t0−δ
|h|p ≥ δ|h(t0)| > 0

so ‖h‖p 6= 0.

(e) This is a standard 3ε-argument, using Minkowski’s inequality.

(f) It is trivial that ‖h‖u is an essential bound for h, and thus ‖h‖u ≥ ess supx∈[a,b] |h(x)| =
‖h‖∞. Conversely, there is x0 so |h(x0)| = ‖h‖u (why?). Given ε > 0, find δ > 0
so |x−x0| < δ implies |h(x)| > ‖h‖u−ε. Then (x0− δ, x0 + δ)∩ [a, b] is a non-null
set on which |h(x)| > ‖h‖u − ε. It follows that ‖h‖∞ ≥ ‖h‖u − ε.

2. (a) If f ∈ Lp(R), then limn→∞ |f − fχ[−n,n]| = 0 a.e. and |f − fχ[−n,n]| ≤ 2p|f |p a.e.
Then using L.D.C.T. limn→∞

∥∥f − fχ[−n,n]
∥∥
p

= 0, so there is n so
∥∥f − fχ[−n,n]

∥∥
p
<

ε/3. Using part (e) of the question above, there is g ∈ C[−n, n] such that
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(∫ n
−n |g − f |

p
)1/p

< ε/3. Finally, we can find h ∈ Cc(R) so h|[−n,n] = g and

supp(h) ⊂ [−n − (ε/3(|g(−n)| + 1)p, n + (ε/3(|g(n)| + 1)p], suitably bounded so
‖h− g‖p < ε/3. (Draw pictures to see why this proof works.)

(b) Let f ∈ Cc(R), ε > 0. Find N so |x| > N implies |f(x)| < ε/2. Find h ∈ Cc(R)
so h|−N,N ] = f |−N,N ] and |h(x)| < ε/2 for |x| > N . (We can find h so supp(h) ⊂
[−N − δ,N + δ] for any δ > 0.) Then

‖f − h‖∞ = sup
|x|>N

|f(x)− h(x)| ≤ sup
|x|>N

|f(x)|+ sup
|x|>N

|h(x)| < ε.

(c) This is false for 1 ≤ p <∞. Consider

f(x) =

{
1 for − 1 ≤ x ≤ 1

1
|x|1/p for |x| > 1.

For p =∞, C0(R) is a closed subspace of L∞(R). The proof is nearly identical to
that of 2 (f).

3. (a) Given ε > 0, we choose, first, 1 > δ > 0 so |t− 0| < δ implies |ϕ(t)− ϕ(0)| < ε/4,
and then choose N so n ≥ N implies∫

[−1,−δ]
fn +

∫
[δ,1]

fn <
ε

6 ‖ϕ‖∞
and

∣∣∣∣∫
[−1,1]

fn − 1

∣∣∣∣ < min

(
ε

3 ‖ϕ‖∞
,
1

3

)
where we may assume ‖ϕ‖∞ > 0. Thus for n ≥ N we can (and must) check that∣∣∣∣ϕ(0)−

∫
[−1,1]

ϕfn

∣∣∣∣ ≤ ∣∣∣∣ϕ(0)− ϕ(0)

∫
[−1,1]

fn

∣∣∣∣+

∣∣∣∣∫
[−1,1]

[ϕ(0)− ϕ]fn

∣∣∣∣
<
ε

3
+ 2 ‖ϕ‖∞

∫
[−1,−δ]∪[δ,1]

fn +

∫
(−δ,δ)

|ϕ(0)− ϕ|fn

≤ 2ε

3
+
ε

4

∫
[−1,1]

fn < ε.

(b) Consider either of the sequences given by

fn = nχ(0,1/n] or fn =
n

2
χ[−1/n,1/n].

Note that the first sequence converges pointwise to 0 everywhere, whilst the second
does so on [−1, 1] \ {0}.
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