Pure Math 450, Assignment 6
Sample Solutions

1. (a) Let k # 0. By direct calculation, using that e~**! = cos kt — isin kt and that the
integral of an odd function in a symmetric interval is zero (why?) we get

1 K
ck(f):%/ f(t)cosktdt = c_p(f).
Moreover, we find by evenness that

iﬁ /7T f(t)cosktdt = % /7T [X[=m0)(8) + Xjo.m (£)] f(t) cos kt dt = %/Oﬁ f(t) cosktdt

Thus, we obtain

n n

sn(f,t) = D al£)e™ = co(f) + Y (cn(e™™ + cu(f)e™)
k=—n k=1
:co(f)—chk(f)(e_ikt—l— ikty = +Qch ) cos kt.
k=1
(b) We have ¢o(f) = W/2 1ds = 1 and for k # 0 we have

in(kw/2) {0 if k is even

1 [ sin
Ck(f)_;/o‘ COSdeS:—ﬂ-k = (2—1)1j lfkf:2j+1
i+ :

(c) We have from (b) that

n—1 ;
2(—1)y .
Son(fyt) = co(f) + ce(f) coskt = —————cos(2j + 1)t.
Z 275+ 1

Using any of Dini’'s Theorem, Hardy’s Tauberian Theroem, or Fejer’s Theorem
combined with alternating series test, we see that

I & 2(—1)
1= f(0) = lim S9n(f,0) = =
F0) = Jim san(£0) = 5+ 2 575

hence 7% 2]+1 = /4.

[We may verify that {1,v/2cos(k-)}$, is an orthonormal basis for L§(T) = {f €
Lyo(T) : f(—t) = f(t) for a.e. t}. Indeed we first use the fact that 2 cos kt coslt =
L(eHDt 4 ilh=t 4 @ill=R)t 4 e=ikHDt) 6 show that this sequence is indeed or-
thonormal. Now if f € L§(T) then by Riesz-Fischer lim,, . || f — sn(f)]l, = 0, so



by (a), span{1,v/2cos(k-)}$, is dense in L§(T).] [Alternatively, we may recall

from (a) that c4(f) = ex(f). 50 S, lew(HP = leof? +2 54, lex(f)[?] Either
way, we can immediately use Bessel’s identity to see that

oo

1 1 2

1 (7 > 1
330 | P = = (P + > Hallf =1+ = X Gy

and hence > 77 m = 7?/8. Finally, if S = Y, 75, then by standard ma-

nipulations with converging sums we have

2 1 S 2
S—gzz =  S=—

(d) We have ¢o(g) = £ [Tcoshasds = 2229 [f k> 1 we do 2 steps of integration
by parts to get
i inharm - (=1)% &k [T
Ik:/ cosh ascos ks ds = sinhar - (1) +—/ sinh aes sin ks ds
0 o @ Jo
sinhar - (—=1)¥ k2
a a

Solve for I}, and divide by 7 to get

asinhar (—=1)*
er(9) = i a? + k2

(e) From (d) we obtain

_ sinham N 2asinh ar ¢~ (—1)F

Snlg,t) =
(9.1) am T — o? + k2

cos kt.

Using Dini’s Theorem, Hardy’s Tauberian Therorem, the integral test for series
and Fejer’s Theorem, or q. 2 below, we see that

sinhar  2asinham o= (—1)F
1=¢(0) =
9(0) am * T kz:; a? + k2
and hence
ar —sinhar i (—1)*
2a2sinhar P a? + k2

Similarly (using the Lipschitz version of Dini’s theorem instead of Dini’s Theorem,
or any of the other techniques) we have

sinhar  2asinh am < 1
+ >

2 2
QT T Q k
— +

coshamr = g(m) =



and hence

. oo
am cosh am — sinh ar Z

2a2 sinh ar — a? + k2

[As an exercise, take o — 0 on the left hand side (eXpand numerator and denom-
inator into Taylor Series to make this easier) to obtain “— By the Weirestrauss
M-Test, the series of functions on the right converges unlformly in any disc about
0, and thus defines a continuous function in such a disc.] As in (c¢) above we use

Bessel’s identity to obtain

sinh 2am 1 4 sinh? ar  2a?sinh? ar < 1
-+ 1= — h? asds =
2am * 2 J_ . oSt asas a?m? * 2 ; (o + k2)?

from which we can extract a(n unattractive) formula for » .2, m

2. (a) Let f, = > 1_ , c(f)eF Then {f,}22, is uniformly Cauchy; check that for m < n

we have o)
fn = Fulls = D DI+ D lelf)
k=—n k=m+1

Thus this sequence has a uniform limit f,. Check that ¢, (f.) = ¢,(f) for each n
from which it follows f, = f a.e. (by Corollary to Abstract Summability Kernel
Theorem). [Notice, this is really the Weirestrauss M-Test.]

(b) By (a), above, we may work in C(T), which is uniformly complete. Write f =
S a(f)er, g = Z;’;foo ci(g)e?, where the sums are regarded as converging
(absolutely) uniformly. We not that multiplication by a fixed element is both
linear and continuous on C(T) so we have

fa=1 ¢il9)e = Y ¢lg)fe

j=—00 j=—00

:icj<g><§ck > =3 Y egalf)e

Jj=—00 k=—00 Jj=—00 k=—00

What we would like to do, right now, is re-arrange our sums over fixed functions
e'. Set | =k + j and the candidate coefficient for €' is -2 ¢ x(g)ck(f). This
makes sense as

Z chk Z Zlclk New(f)] (1)
=Z(zm Y- £ (5 i)
:Z’Cl Z‘Ck ’<OO



Note that (f) is a valid comparison, even if the right hand side diverges; also
since Y oo |ck] = sup,en D p—_, |ck|, the interchange of sums is really and in-
terchange of suprema, and is always valid. Thus, appealing to the re-arrangements
lemma below [Z xZ replacing N], we obtain

fg= Z ( Z Cm—k(g>ck(f)) e
m=—00 \k=—o00

Since for a fixed m, |c,,(h)| < |||, < ||k, for h in C(T) we have that h — ¢,,(h)
is continuous so ¢, (fg) = > pe . ck—m(9)ck(f), and (qn(fg))mGZ is summable.
[Lemma. (Absolutley summing series allow arbitrary re-arrangements.) If X
is a Banach space, {xy}32, is a sequence in X such that Y o ||zk|| < oo, then
T = lim,, o 22:1 xy exists (as usual we write x = 220:1 xy ) and for any bijection
o: N —= N we have

n
li St d Is x.
Jim ;xg(k) exists and equals x

Proof. The first statement in is proved in (a), above. To see the second, let € > 0.
Find n such that > 37 ., ||zx|| < €/2, and let m = max{c(1),...,0(n)}. Then

check that for m’ > m we have Hx — Zzl:ll xa(k)H <el

(c) Write f(t) = lim,oo n(f(t + 1/n) — f(t)) for a.e. ¢ € R. Note this makes f’
the pointwise limit of continuous functions. Let {s; < --- < s,} C [—m, 7] be
the finite set of points of non-differentiability of f, and M = sup{|f'(t)| : t #
s; forany ¢ = 1,...,m}. Let us use this to show that f is Lipschitz. First, if
s; < s <t<sjp (here sp4q = s1+2m), then by MVT

[f(s) = fOI =1 ()]s —t] < M]s —t].
[In C-valued case we have |f(s) — f(t)] = [[Ref(s) — Re f(¢)]* + |Im f(s) —
Im f(£)[P]'/? = [|(Re f)' (&) Pls—t*+](Im f)/ (£) Pls—t*]"/* < V2M[s—t], but let’s
not quibble over a bounding constant.] If, s; < s < s;;; (here s,,41 = s1 + 2m)
then by continuity of f

17(5) = F(s)] = lim |(s) = F(B)] < lim mls — ¢] = Mls — 5,1
t—>sj t—)sj

Similarly |f(s;) — f(sj+1)] < M|sj — sj41]- Now if 5,1 < s <85 < s, <t < Sp41

for some 1 < j < k < 2m (here we employ the convention that sy = s, — 27 and

Sk = Sg—m + 2w for m +1 < k < 2m), we have

[f(s) = FO] = 1f(s) = f(s5)] + i [ (8:) = fsirn)| + [ (sk) = F(D)]

k—1
< Mls—s;|+ > Mls; — sipa| + Mlsy, — t| = M|s — t|

=7



Hence we find that
n|f(t+1/n) + f(t)] < nM|(t+1/n) —t|=M

So the constant function M is an integrable majorant for (—%)* f — f. Thus by
LDCT, and then translation invariance we get

/f hmn/ ((=1/n)xf — f) = 0.

n—oo
(d) That ¢o(f") = 0 follows immediately. Now let g = fe™". Then

g(t) = f{)e ™ —inf(t)e

so it follows that

o 1 " r / .

0= o _Wg = cp(f) —inc,(f).

(e) If f € D(T), then f' € Ly(T) [i.e. thereis g € Ly(T) so g = f" a.e.]. Then we have
— 1
Z|Cn )| = leo(f |+Z|0n )l = leolf )|+Z|||Cn( Bl
S "0 ey
1/2 1/2
oo 1 e.¢]
=loOl+| 2 — D lealE| by CS <)

Tnr0 Tnr0

2
™
< leo(HI+25 I1fll;  (by Bessel's <)

< 00.

3. (a) By assumption (which?), fi # 0 so e; # 0. Let us suppose inductively that

e1,...,e,_1 can be created as claimed. If £ > 2 and 1 <1 < k we easily check
k—1
(€hs€i) = <fk - Z(flmej)ej; €¢> =0
j=1
so e}, is orthogonal to each ey, ..., e,_1. Moreover

k—1
fr=-e.+ Z(fk, ej)e;j € Spam{ej}‘];?:1

J=1

Thus, inductively, we find span{es, ..., ex_1,€.} = span{f] . Since {f;}52, is
linearly independant, dim span{ fiYs_, = k and we find that ek 7é 0. Thus {ej}
is orthonormal. Hence {e;}* j—1 is orthonormal too.

5



(b) Suppose X has a dense sequence {dj}72, then (J 7, span{d;}}_, is dense in X
(why?). We recursively find a linearly independant set as follows:
e let ny =min{n e N:d, #0};
e if m > 1, let n, = min{n € N:d, ¢ span{d,,, ..., dn,_,}}.
Now let fr = d,,. If dim X < oo, this process terminates after finitely many steps
and we obtain a basis (why?); if not, this process produces an infinite sequence
(why?). Verify that (J>~, span{fx}7_; = .~ span{di}}?_,. Now apply (a) to
{fx}32, to obtain an orthonormal sequence {e;}%>; for which span{e;}>, =
span{ fi} 32, is dense in X.
Conversely, if X' contains an orthonormal sequence {ej }7° , for which span{e;}32,
is dense in &, then the countable set spang{er}i2; = {D ;1 qrer : 7 € N and
Q- qn € Q[i]} (Qi] = {q+ir: q,r € Q} is the field of Gaussian rationals; we
would use Q if we assume X is a R-inner product space) is dense in span{e;}72 ;.
Indeed, if f = >"}_, cauep € span{e,}i2,, then find ¢i,..., ¢, in Q[i] for which
lag — qx| < €/4/n. Then

n 2 n
Hf_Zlek =) aw —aul* <&
K1 i

Since span{e; }72, is dense in X, it follows a standard argument that spangy; {ex 32,
is dense in X too.

[Note: since we do not assume X is complete, we must avoid using infinite sums.
There is an abstract analogue of Riesz-Fischer: A separable inner product space
X is complete < for any orthonormal basis {e,};2,, > ro, axer, € X whenever
()2, € 6(N)]

4. (a) That ||1||, = 1 and each |||, = 1 is a rudimentary computation. Note that
Unithn; = 0 for 4,5 = 1,...,2" with i # j, s0 (¥, %¥, ) = 0. Now if m < n,
i=1,...,2™ j=1,....2" then

2(m+n—2)/2wn’j o= onmi_ ]
U, ithng = § =22, o = 2mTng
0 otherwise.

In each case it is straightforward to verify (¢, ;) = 0. Similarly, if 0 < n
then (v, ¥, ;) =0 for any j =1,...,2"™

(b) It is trivial to verify that {xy, ,}7-, is linearly independant, and thus is a basis
for E,. Moreover {1} UU"_ {tm }3Z, is orthonormal, linearly independant, of
cardinality 1 +2 4+ --- 4 2""! = 2" and contained in E,,, so it must be an ortho-
normal basis for E,. Thus by the (proof of) the Linear Approximation Lemma
we find for ¢ in E,

0 = dist(p, En) = [l¢ — Ha(@)|-



(c) Solution #1. Since measurable simple functions are dense in Ly[0, 1] by A4,
Q2(a), it suffices to show for any measurable £ C [0, 1] that yg can be approxi-
mated by dyadic step functions. Given € > 0, find an open set GG such that £ C G
and M(G) < ME) ++/2/2. Write GN(0,1) = J,(a;,b;) (A1, Q4). Let for each
J and n,

a;, =min{k/2" :k=1,...,2" = 1,a; <k/2" < b;} and

Vi, =max{k/2" :k=1,...,2" = 1,a; < k/2" < b;}.

Then ¢, = Z]oil X[a!, . ¥, ) is a dyadic step function, and lim, ., ¢, = xg a.e.

(verify). Since |xa—¢n|? < Xa, it follows the LDCT that lim,, .« ||xa — @nlls = 0.
Thus there is n for which || xe — ¢n |5 < €2/4. Then it is a standard calculation
that

len = X2l < llen = Xcllz + Ixe — xell, <é

Solution #2. Let f € Ly[0,1]. Fix, for the moment, m € N. By A4, Q2, find
h € C[0,1] so || f — h||, < 1/m. Since h is uniformly continuous, there is n,, so
|s — t| < 2/2" implies |h(s) — h(t)| < 1/m. Let @, = So h(k/2")x1, .-
Then ||¢n,, — b, < 1/m. We thus have

: 2
dist(f, En,.) < If = ¢lly < If = hll + 17 = ol < —

(why?). It is clear we can arrange ny < ng < ..., and thus

2
0 < lim dist(f, £,) < lim dist(f, E,,) < lim — =0
n—00 m—00 m—o0 M
which shows that | J)~ | span <{77/)0} U U e }?l:l> = .2, E, isdense in L,[0, 1].

[Notice, moreover, that lim, o || H,(f) — f|l, = 0 as by Linear Approximation
Lemma, ||Hn(f) - f||2 = diSt<f7 En)]



