PMath 451/651, Fall Term 2012

Homework Assignment 1 – Solutions

Problem 1 collects, in an abstract setting, the Boolean properties of half-open rectangles (or half-open intervals) which took us to the concept of algebra of sets.

Problem 1. Let X be a non-empty set and suppose that \mathcal{F} is a collection of subsets of X which has the following properties:

- (i) $X \in \mathcal{F}$.
- (ii) If $F, G \in \mathcal{F}$ then $F \cap G \in \mathcal{F}$.
- (iii) For every $F \in \mathcal{F}$ one can find $C_1, \ldots, C_n \in \mathcal{F}$ (for some $n \in \mathbb{N}$) such that $X \setminus F = C_1 \cup \cdots \cup C_n$.

Consider the collection A of subsets of X which is defined as follows:

$$\mathcal{A} := \{ A \subseteq X \mid \exists n \geq 1 \text{ and } F_1, \dots, F_n \in \mathcal{F} \text{ such that } F_1 \cup \dots \cup F_n = A \}.$$

Prove that A is an algebra of subsets of X.

Solution.

- First, note that $X \in \mathcal{F} \subseteq \mathcal{A}$.
- If $A \in \mathcal{A}$, then by definition of \mathcal{A} , there are $F_1, \ldots, F_n \in \mathcal{F}$ such that $\bigcup_{i=1}^n F_i = A$, whence by property (iii) of \mathcal{F} , for each $i \in \{1, \ldots, n\}$, there are $C_{i,1}, \ldots, C_{i,k_i} \in \mathcal{F}$ such that $X \setminus F = \bigcup_{j=1}^{k_i} C_{i,j}$. Then

$$X \setminus A = X \setminus \bigcup_{i=1}^{n} F_{i} = \bigcap_{i=1}^{n} (X \setminus F_{i}) = \bigcap_{i=1}^{n} \bigcup_{j=1}^{k_{i}} C_{i,j} = \bigcup_{j \in \prod_{m=1}^{n} \{1, \dots, k_{m}\}} \bigcap_{i=1}^{n} C_{i,j_{i}}.$$

By property (ii) of \mathcal{F} (applied n-1 times), each $\bigcap_{i=1}^n C_{i,j_i} \in \mathcal{F}$, whence by definition of \mathcal{A} , $\bigcup_{j \in \prod_{m=1}^n \{1,\dots,k_m\}} \bigcap_{i=1}^n C_{i,j_i} \in \mathcal{A}$. Thus, $X \setminus A \in \mathcal{A}$.

• Finally, if $A, B \in \mathcal{A}$, then since the union of two finite unions is still a finite union, $A \cup B \in \mathcal{A}$.

Thus, A is an algebra of subsets of X.

P

Problem 2. Let (X,d) be a metric space. Let \mathcal{D} be the collection of all open subsets of X, and let us put

$$\mathcal{A} := \Big\{ A \subseteq X \ \middle| \ \begin{array}{l} \exists n \geq 1 \text{ and } D_1, \dots, D_n, C_1, \dots, C_n \subseteq X \text{ such that } D_1, \dots, D_n \text{ are open,} \\ C_1, \dots, C_n \text{ are closed, and } A = (D_1 \cap C_1) \cup \dots \cup (D_n \cap C_n) \end{array} \Big\}.$$

Prove that A is the algebra of subsets of X which is generated by \mathcal{D} .

Solution. Let $\mathcal{F}=\{D\cap C\mid D \text{ is open and }C \text{ is closed}\}$. Then since X is both open and closed, letting D=C=X, we see that $X\in\mathcal{F}$. Also, if $D_1\cap C_1,D_2\cap C_2\in\mathcal{F}$, then $(D_1\cap C_1)\cap (D_2\cap C_2)=(D_1\cap D_2)\cap (C_1\cap C_2)$, and since open sets stay open under finite intersections and closed sets stay closed under arbitrary intersections, we have that $(D_1\cap C_1)\cap (D_2\cap C_2)\in\mathcal{F}$. Now, if $D\cap C\in\mathcal{F}$, then $X\setminus (D\cap C)=(X\setminus D)\cup (X\setminus C)$. But, $X\setminus D$ is closed and $X\setminus C$ is open, so we see that $X\setminus (D\cap C)=C'\cup D'$ where $C'=X\setminus D$ and $D'=X\setminus C$. We can then write this as $X\setminus (D\cap C)=(C'\cap D_1)\cup (D'\cap C_1)$ where $C_1=D_1=X$ (since X is both open and closed). Thus, \mathcal{F} satisfies all the conditions of Question 1. Therefore, by definition of A, we have that A is an algebra of subsets of X.

Let \mathcal{U} be any algebra of subsets of X containing \mathcal{D} . Then as before, \mathcal{U} also contains all closed sets. Being closed under intersection, it also contains all subsets of the form $D \cap C$ where D is open and C is closed. Finally, since an algebra is closed under finite unions, we have for any collection of open sets $D_1, ..., D_n$ and any collection of closed sets $C_1, ..., C_n$ that $(D_1 \cap C_1) \cup ... \cup (D_n \cap C_n) \in \mathcal{U}$. Then for every $A \in \mathcal{A}$, we have $A \in \mathcal{U}$, so $A \subseteq \mathcal{U}$. This shows that \mathcal{A} is the smallest algebra of subsets of X containing \mathcal{D} ; therefore, it must be the algebra of subsets of X generated by \mathcal{D} , and we are done. \square

Problem 3. In this problem we consider the metric space (X,d) where X=[0,1] and d is the usual distance on [0,1] (that is, d(s,t) = |s-t| for $0 \le s, t \le 1$).

(a) Let \mathcal{D} be the collection of all open subsets of X, and let \mathcal{A} be the algebra of subsets generated by \mathcal{D} . Prove that $[0,1] \cap \mathbb{Q} \not\in \mathcal{A}$.

(b) Let \mathcal{B} be the Borel σ -algebra of (X, d). Prove that $[0, 1] \cap \mathbb{Q} \in \mathcal{B}$.

Solution: For this problem let $Q = Q \cap [0,1]$ and enumerate it as $Q = [q_1,...,q_n,...]$.

(a) The version of Baire's theorem that we need is this: "the countable intersection of dense open sets is dense". A set USX is said to be of type Gs if there exist open sets D1, D2,... (X) such that $U = \bigcap_{n=1}^{\infty} D_n$.

Suppose Q were of type Gs. Then there would exist $D_1, D_2, ..., D_n, ... \subseteq X$ such that $Q = \bigcap D_n$.

Then c(Q) = d(Q \(\int_{0,1}\)) = d(Q) \(\alpha\)([0,1]) = \(\R\)([0,1]) = \(\R\)([0,1]) = \(\R\) which means that, since Du 2 nd Dn for every hEN, cl(Dx) 2 cl(Q)=X \Rightarrow $O(D_u) = X$

So the Du, Wil, are dense open sets.

Consider En:= X [qn], n>1. These En are dense, open sets too.

By Baire, el (D, NE, OD2 NE2 n...) = X

But DINE, ODZNEZA ... = NDW O NEW = Q OXIQ = Ø, whose closure is itself; a contradict.

So Q is not of type Gs.

Supprese QEAL. By Problem 2, Intl and Da,..., Dn, Ca,..., Cn EX such that Q = (D1 nC,) U... U (Dn n Cn). The good is to show that the RHS is a set of type 65.

Every open set is of type Gs (just intersed it with itself, or X, countably many times) Every closed set is of type Gs, too! F closed = $\prod_{n=1}^{\infty} \left(\bigcup_{x \in F} B(x, \frac{1}{n}) \right)$ (from PM351)

Intersection of Gs sets is obviously Gs.

Finite unions are Gs as well: suppose U_n , V_n , n>1 are open subsets of X.

Then $\left(\bigcap_{n=1}^{n}U_n\right)\cup\left(\bigcap_{m=1}^{n}V_m\right)=\bigcap_{n=1}^{n}\left(U_n\cup\bigcap_{m=1}^{n}V_m\right)=\bigcap_{n=1}^{n}\left(U_n\cup\bigvee_{m=1}^{n}V_m\right)$, Hence Q, which

is not Gs, equals (Danci)u...u (Dinnen), which is Gs, a contradiction. So Q&A.

(b) The Borel o-algebra contains all closed sets, and is closed under countable union, 50 Q=0 End ∈B.

NB.

Problem 4. Let X be an infinite uncountable set, and let $\mathcal{U} := \{ \{x\} \mid x \in X \}$ (that is, \mathcal{U} is the collection of all the 1-element subsets of X). Let \mathcal{A} be the σ -algebra generated by \mathcal{U} . Prove that \mathcal{A} can be described as follows:

$$\mathcal{A} = \{B \subseteq X \mid B \text{ is countable }\} \cup \{C \subseteq X \mid X \setminus C \text{ is countable }\}.$$

Solution. Let us denote

$$\mathcal{B} := \{ B \subseteq X \mid B \text{ is countable } \} \cup \{ C \subseteq X \mid X \setminus C \text{ is countable } \}.$$

We prove by double inclusion that $\mathcal{B} = \mathcal{A}$.

" \subseteq " Every countable subset B of X must belong to \mathcal{A} , because B can be writen as a countable union of 1-element sets, and because \mathcal{A} is closed under countable unions. The complements of countable subsets of X must then also be in \mathcal{A} , because \mathcal{A} is closed under taking complements. Thus we have that $\mathcal{B} \subseteq \mathcal{A}$, as required.

"\sumset "\sumset " Let us start by verifying that \mathcal{B} is a σ -algebra. For convenience we write $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$, where

$$\mathcal{B}_1 := \{B \subseteq X \mid B \text{ is countable }\} \text{ and } \mathcal{B}_2 := \{C \subseteq X \mid X \setminus C \text{ is countable }\}.$$

We check the three axioms for a σ -algebra.

(AS1) $X \in \mathcal{B}_2 \subseteq \mathcal{B}$, because the complement of X is \emptyset , which is countable.

(AS2) If $A \in \mathcal{B}$ then $X \setminus A \in \mathcal{B}$. Indeed, either A belongs to \mathcal{B}_1 in which case $X \setminus A$ belongs to \mathcal{B}_2 , or vice-versa, A belongs to \mathcal{B}_2 in which case $X \setminus A$ belongs to \mathcal{B}_1 .

 $(\sigma - \text{AS3})$ Let $(A_n)_{n=1}^{\infty}$ be a countable family of sets from \mathcal{B} . If every A_n is from \mathcal{B}_1 , then $\bigcup_{n=1}^{\infty} A_n$ is in \mathcal{B}_1 as well (a countable union of countable sets is still countable). In the opposite case there exists an index $n_o \geq 1$ such that $A_{n_o} \in \mathcal{B}_2$, and we have

$$X \setminus \left(\bigcup_{n=1}^{\infty} A_n \right) \subseteq X \setminus A_{n_o} \Rightarrow X \setminus \left(\bigcup_{n=1}^{\infty} A_n \right)$$
 is countable $\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{B}_2$.

So in any case, we obtain that $\bigcup_{n=1}^{\infty} A_n \in \mathcal{B}$. This completes the verification of the fact that \mathcal{B} is a σ -algebra.

But now, it is clear that \mathcal{B} contains \mathcal{U} (as every 1-element set is countable, and thus belongs to \mathcal{B}_1). So we have

$$\left\{\begin{array}{c} \mathcal{B} \text{ is a } \sigma\text{-algebra} \\ \mathcal{B} \supseteq \mathcal{U} \end{array}\right\} \ \Rightarrow \ \mathcal{B} \supseteq \mathcal{A},$$

with the last implication holding because A is the smallest σ -algebra which contains U.

Problem 5. (a) Let X be a non-empty set, and let \mathcal{U}_1 and \mathcal{U}_2 be two collections of subsets of X, such that $\mathcal{U}_1 \subseteq \mathcal{U}_2$. Let \mathcal{A}_1 be the σ -algebra generated by \mathcal{U}_1 , and let \mathcal{A}_2 be the σ -algebra generated by \mathcal{U}_2 . Prove that $\mathcal{A}_1 \subseteq \mathcal{A}_2$.

- (b) Let (X, d) be a metric space. Let \mathcal{D}_o be the collection of all the open balls in X (that is, $\mathcal{D}_o = \{B(a; r) \mid a \in X, r > 0\}$), and let \mathcal{A} be the σ -algebra generated by \mathcal{D}_o . Prove that $\mathcal{A} \subseteq \mathcal{B}$, where \mathcal{B} is the Borel σ -algebra of (X, d).
 - (c) Show by example that the inclusion from part (b) of this question can be strict.

Solution.

- a) By definition of σ -algebra generated by \mathcal{U}_1 , we have that $\mathcal{U}_1 \subseteq \mathcal{U}_2 \otimes \mathcal{A}_2$. Hence \mathcal{A}_2 is a σ -algebra contain \mathcal{U}_1 . Also, we have \mathcal{A}_1 is the smallest σ -algebra that contains \mathcal{U}_1 , we must have $\mathcal{A}_1 \subseteq \mathcal{A}_2$. \square
- b) As we proved in PMath 351, every open ball is a open set. We let \mathcal{D}_1 be the collection of all the open sets in X. That is, $\mathcal{D}_1 = \{D \mid D \subset X, \ D \ is \ open \}$. We thus have $\mathcal{D}_0 \subseteq \mathcal{D}_1$. Thus, from result in a), we have $\mathcal{A} \subseteq \mathcal{B}$. \square
 - c) Consider metric space (\mathbb{R}, d) , where

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

We have unit interval [0,1] is an open set as $\forall x \in [0,1], \ B(x,0.5) = \{x\} \subset [0,1]$. We have that $[0,1] \in \mathcal{D}_1$.

We also note that, for any open ball centered at $a \in \mathbb{R}$, we have $B(a,r) = \begin{cases} \mathbb{R} & r > 1 \\ \{a\} & 0 < r \le 1 \end{cases}$. We have $\mathcal{D}_0 = \{\{a \mid a \in \mathbb{R}\} \cup \{\mathbb{R}\}\}$. From result in Problem 4, we have

$$\mathcal{A} = \{ B \subseteq X \mid B \text{ is countable} \} \cup \{ C \subseteq X \mid X \setminus C \text{ is countable} \}.$$

is σ -algebra generated by \mathcal{D}_0 . But then, we have [0,1] is uncountable, nor is $\mathbb{R}\setminus[0,1]$. We then have $[0,1]\notin\mathcal{A}$. Indeed, we have $\mathcal{A}\subsetneq\mathcal{B}$. \square

In Problem 6 we use the concept of *separable* metric space. Recall from your previous analysis courses that a metric space (X, d) is said to be separable when there exists a countable subset $S \subseteq X$ such that S is dense in X.

Problem 6. Let (X,d) be a separable metric space. Let \mathcal{D}_o be the collection of all the open balls in X, and let \mathcal{A} be the σ -algebra generated by \mathcal{D}_o . Prove that $\mathcal{A} = \mathcal{B}$, where \mathcal{B} is the Borel σ -algebra of (X,d).

Solution.

Let \mathcal{D} be the collection of all open subsets of X. We will see that $\mathcal{D} \subseteq \mathcal{A}$. Let S be a dense countable subset of X and let $D \in \mathcal{D}$. For each $x \in D \cap S$, let

$$B_x := \bigcup \{B(x;r) \subseteq D : r > 0\}.$$

As D is open, we have that $B_x \neq \emptyset$, $B_x \subseteq D$ and $B_x \in \mathcal{D}_o$. We claim that

$$D = \bigcup_{x \in D \cap S} B_x. \quad (*)$$

Let $y \in D$. Then as D is open, there exists $\epsilon > 0$ such that $B(y; \epsilon) \subseteq D$. Since S is dense, there exists $x_0 \in S$ such that $d(x_0, y) \le \epsilon/3$. Note that $x_0 \in B(y; \epsilon)$ and so $x_0 \in D \cap S$. Also, by the Triangle Inequality, we know that $B(x_0, 2\epsilon/3) \subseteq B(y; \epsilon) \subseteq D$ and so $B_{x_0} \supseteq B(x_0, 2\epsilon/3) \ni y$. As this is true for all $y \in D$, it follows that

$$D \subseteq \bigcup_{x \in D \cap S} B_x \subseteq \mathcal{D}$$

and (*) follows. However, as S is countable, so is $D \cap S$ and so D is in the σ -algebra generated by \mathcal{D}_{σ} , i.e. $D \in \mathcal{A}$. Since this is true for all $D \in \mathcal{D}$, we obtain that $\mathcal{D} \subseteq \mathcal{A}$. Therefore, since \mathcal{B} is the σ -algebra generated by \mathcal{D} , it follows that $\mathcal{B} \subseteq \mathcal{A}$. However, by 5)b we know that $\mathcal{A} \subseteq \mathcal{B}$ and so $\mathcal{A} = \mathcal{B}$.

Problem 7 (restriction of an algebra/ σ -algebra).

Let X be a non-empty set, let \mathcal{A} be an algebra of subsets of X, and let \mathcal{B} be the σ -algebra generated by \mathcal{A} . Let Y be a non-empty set which belongs to \mathcal{A} , and let us denote:

$$\mathcal{M} := \{ M \mid M \in \mathcal{A}, \ M \subseteq Y \}, \quad \mathcal{N} := \{ N \mid N \in \mathcal{B}, \ N \subseteq Y \}.$$

- (a) Verify that \mathcal{M} is an algebra of subsets of Y.
- (b) Verify that \mathcal{N} is a σ -algebra of subsets of Y.
- (c) Prove that the σ -algebra generated by \mathcal{M} is equal to \mathcal{N} .

[Note: It is common that the collections of sets \mathcal{M} and \mathcal{N} defined as above are denoted by $\mathcal{A}|_{Y}$ and $\mathcal{B}|_{Y}$, respectively.]

Solution. (a) We verify that \mathcal{M} satisfies the three axioms defining an algebra of sets. (AS1) Have $Y \in \mathcal{A}$ and $Y \subseteq Y$, hence $Y \in \mathcal{M}$.

(AS2) Let M be a set in \mathcal{M} . Then $Y \setminus M \in \mathcal{A}$ (because $Y, M \in \mathcal{A}$ and \mathcal{A} is closed under set-difference), and $Y \setminus M \subseteq Y$. It follows that $Y \setminus M \in \mathcal{M}$.

(AS3) Let M and M' be two sets in \mathcal{M} . Then $M \cup M' \in \mathcal{A}$ (because $M, M' \in \mathcal{A}$ and \mathcal{A} is closed under finite unions), and $M \cup M' \subseteq Y$ (because $M, M' \subseteq Y$). It follows that $M \cup M' \in \mathcal{M}$.

(b) We verify that \mathcal{N} satisfies the three axioms defining a σ -algebra.

(AS1) $Y \in \mathcal{B}$ and $Y \subseteq Y$, hence $Y \in \mathcal{N}$.

(AS2) Let N be a set in \mathcal{N} . Then $Y \setminus N \in \mathcal{B}$ (because $Y, N \in \mathcal{B}$ and \mathcal{B} is closed under set-difference), and $Y \setminus N \subseteq Y$. It follows that $Y \setminus N \in \mathcal{N}$.

 $(\sigma\text{-AS3})$ Let $(N_n)_{n=1}^{\infty}$ be a countable family of sets from \mathcal{N} . Then $\bigcup_{n=1}^{\infty} N_n \in \mathcal{B}$ (because every N_n belongs to \mathcal{B} , and \mathcal{B} is closed under countable unions), and $\bigcup_{n=1}^{\infty} N_n \subseteq Y$ (because $N_n \subseteq Y$ for all $n \ge 1$). It follows that $\bigcup_{n=1}^{\infty} N_n \in \mathcal{N}$.

(c) Let \mathcal{P} denote the σ -algebra of subsets of Y which is generated by \mathcal{M} . We have to prove that $\mathcal{P} = \mathcal{N}$.

We first observe that the inclusion $\mathcal{P} \subseteq \mathcal{N}$ is immediate. Indeed, from, the given definitions is clear that $\mathcal{M} \subseteq \mathcal{N}$. Since we saw in (b) that \mathcal{N} is a σ -algebra, it follows that \mathcal{N} must contain the σ -algebra generated by \mathcal{M} (which is \mathcal{P}).

The remaining part of the solution will be devoted to the proof of the reverse inclusion, $\mathcal{P} \supseteq \mathcal{N}$. We start on this by considering the collection $\widetilde{\mathcal{B}}$ of subsets of X defined by

$$\widetilde{\mathcal{B}} := \{ B \in \mathcal{B} \mid B \cap Y \in \mathcal{P} \}.$$

We will prove the following claims about $\widetilde{\mathcal{B}}$.

Claim 1. $\widetilde{\mathcal{B}}$ is a σ -algebra.

Verification of Claim 1. We verify that $\widetilde{\mathcal{B}}$ satisfies the three axioms defining a σ -algebra. (AS1) $X \cap Y = Y \in \mathcal{P}$, hence $X \in \widetilde{\mathcal{B}}$.

(AS2) Let \widetilde{B} be a set in $\widetilde{\mathcal{B}}$. We want to prove that $X \setminus \widetilde{B}$ belongs to $\widetilde{\mathcal{B}}$ as well. This amounts to proving that $(X \setminus \widetilde{B}) \cap Y \in \mathcal{P}$. And indeed, we have

$$(X \setminus \widetilde{B}) \cap Y = Y \setminus \widetilde{B} = Y \setminus (Y \cap \widetilde{B}),$$

and the latter set is in \mathcal{P} (because $Y \cap \widetilde{B} \in \mathcal{P}$, and \mathcal{P} is closed under taking complements in Y).

 $(\sigma\text{-AS3})$ Let $(\widetilde{B}_n)_{n=1}^{\infty}$ be a countable family of sets from $\widetilde{\mathcal{B}}$. We want to prove that $\bigcup_{n=1}^{\infty} \widetilde{B}_n$ belongs to $\widetilde{\mathcal{B}}$ as well. This amounts to proving that $(\bigcup_{n=1}^{\infty} \widetilde{B}_n) \cap Y \in \mathcal{P}$. And indeed, we have

$$\left(\cup_{n=1}^{\infty}\widetilde{B}_n\right)\cap Y=\cup_{n=1}^{\infty}\left(\widetilde{B}_n\cap Y\right),\,$$

and the latter set is in \mathcal{P} (because $\widetilde{B}_n \cap Y$ belongs to \mathcal{P} for every $n \geq 1$, and \mathcal{P} is closed under countable unions).

Claim 2.
$$\widetilde{\mathcal{B}} \supseteq \mathcal{A}$$
.

Verification of Claim 2. If $A \in \mathcal{A}$, then from the definition of \mathcal{M} it is clear that $A \cap Y \in \mathcal{M}$. But $\mathcal{M} \subseteq \mathcal{P}$; hence $A \cap Y \in \mathcal{P}$, which means that $A \in \widetilde{\mathcal{B}}$.

Claim 3.
$$\widetilde{\mathcal{B}} = \mathcal{B}$$
.

Verification of Claim 3. $\widetilde{\mathcal{B}}$ is a σ -algebra which contains \mathcal{A} , so it must contain the σ -algebra generated by \mathcal{A} . This means that $\widetilde{\mathcal{B}} \supseteq \mathcal{B}$, and the opposite inclusion is clear from how $\widetilde{\mathcal{B}}$ is defined.

Now back to proving the inclusion $\mathcal{P} \supseteq \mathcal{N}$. Claim 3 gives us that $B \cap Y \in \mathcal{P}$, for every $B \in \mathcal{B}$. But then let N be an arbitrary set in \mathcal{N} . We have $N \in \mathcal{B}$ and $N \cap Y = N$, hence we infer that $N = N \cap Y \in \mathcal{P}$ (which completes the verification of the required inclusion).