PMath 451/651, Fall Term 2012

Homework Assignment 2 — Solutions

Problem 1. Let (X, M, 1) be a measure space, and let (4,)32; be a family of sets
from M. Consider the set

T := {a; eX for every n > 1 there exists k > n }
s such that z € Ay .
This set is sometimes called the “tail-set” of the sequence A1, As,..., Apn,. ...

(a) Prove that T = NS, ( nznAk) and that, as a consequence, T belongs to the o-
algebra M.

(b) Suppose that 3 2, u(A,) < co. Prove that u(T) = 0.

Solution.

(a) Let = € T. Then for every n > 1, there exists k > n such that z € Aj.
Thus, for every n > 1, we have ¢ € U, Ar. Since z is in each of these unions, we
see that it must be in the intersection of them as well. Thus, z € N, (U, A), and
T ¢ g2y (URL,4r). Now, let ¢ € N2, (U, A). Then for everyin > 1, ¢ € UR. Ay
That is, for each n > 1, there exists a k > n with z € Aj. Thus, z € T, and we see that

T =52 (U2, Ax). Consequently, since M is closed under countable unions and countable
intersections, we have that T' € M.

(b) Let & > 0. Since Y o2, u(A,) < 0o, we can choose N € N such that
n=1
Yoo W{An) < &. Now, we have the following: .

wT) = u( net (UiZnAr))
p(Uge v Ar) since T C USRS \ Ay,
(oo}

< Z w(Ax) by o-subadditivity of
k=N

A

€.

Hence, since ¢ > 0 is arbitrary, we conclude that u(7) =0. O



Problem 2 is related to the discussion around the Borel o-algebra from Lecture 4. In
this problem let us agree to use the following ad-hoc term: a subset £ C [0, 1] will be called
“Q-efficient” when it has the following properties:

(E1) For every t € R, there exists an element a € F such that t —a € Q.

(E2) If a and b are distinct elements of E, then a — b € Q.

Problem 2. In this problem M is a o-algebra of subsets of R and p: M — [0,00] is a
positive measure. We assume that the measure space (R, M, 1) has the folowing properties:

e [0,1] belongs to M, and p([0,1]) = 1.
¢ (Invariance under translations). For every A € M and t € R, one has that A+t e M
and pu(A+t) = u(A). (Here, as usual, A+t:={a+1t|a€ A}.)

Prove that if E C [0,1] is Q-efficient, then E ¢ M.

Solution. Assume by contradiction that £ € M. Then it makes sense to consider the
quantity o := p(E) € [0, 00]. We have in fact 0 < o < 1, with the second inequality holding
because £ C [0, 1], which implies that u(F) < u([0,1]) = 1.

Let us also consider an enumeration of the rationals in [—1,1]:

Qm["lal] - {Q1>QZ,-~-,Qm-~-},

and let us put E, := E+ ¢, n € N. We note that u(E,) = o, Vn > 1, due to the fact that
w is translation-invariant.

By using the property (E2) for the set E, we observe that the sets E, are pairwise
disjoint. Indeed, assume by contradiction that we had an element t € E,, N E,, for some
m # n. Then a := t— gy, and b := t— g, are elements of F which satisfy a—b = ¢, — g € Q
~ contradiction with (E2). The union of the E,’s is therefore a disjoint union, which must

have
o0

& 0, fa=0
O () =D ) =Y {0 5=y

On the other hand, by using the property (E1), we argue that that UL, E, 2 [0,1].
Indeed, for every ¢ € [0, 1], property (E1) gives us an element a € E such that t —a € Q.
We have t —a € [—1,1] (because 0 < a,t < 1); hence ¢ — a must be equal to g, for some
n € N, and it follows that t = a + g, € Ey,.

By applying u to the inclusion US>, B, 2 [0,1] we find that u(US,E,) > 1. In order
to get an inequality going the other way, we make the immediate observation that every
E, is a subset of [—1,2] (this is because £ C [0,1] and —1 < g, < 1, which implies that
—1<a+q, <2foralla € E). Hence US| E,, C [—1,2], and by applying u to this inclusion
we find that

p(UnZiEn) < u([=1,2]) < p([=1,0]) + u([0,1]) + pu([1,2]) = 3.

The conclusion of the preceding paragraph is that 1 < M(Ug":lEn) < 3. But this is
in contradiction with the formula obtained in (x), which says that u(US2,E,) is equal to
either 0 or oco!

Hence the assumption that £ € M leads to contradiction, and it follows that £ & M,
as required.



Problem 3 fills in the proof for an equivalent description of pre-measures which was
mentioned in class (Remark 5.2).

Problem 3. Let X be a nonempty set, let A be an algebra of subsets of X, and let
Ho = A = [0,00] be an additive set-function. Consider the following two properties which
Lho May have.

Whenever (A4,)S2, are sets from A such that 4; N A; =0 for ¢ # j
(Pre-o-Add) and such that USS 1An is still in A,
it follows that pe(US 1 An) = Y ooy to(An).

(Pre-0-SubAdd) { Whenever A and (A45)52; are sets from A such that AC U Ay,

it follows that pe(A4) < 3 02 to(An).
Prove that (Pre-o-Add) and (Pre-o-SubAdd) are equivalent to each other; that is, A has
property (Pre-o-Add) if and only if it has property (Pre-o-SubAdd).

Solution. Proof that “(Pre-o-Add) = (Pre-o-SubAdd)”.
Let A and (Ay)32; be sets from A such that A C US2;A,. We want to prove that

po(A) < 37021 Ho(An).
For every n > 1, let us put A, := A, N A. Then (4})°2; are sets from A, with

U AL = U (A, N A) = (u:;;lAn) NA=A.
Let us next define A} = A} and 4" := A"\ (U] A}), for n > 2. Then (A7), also are

sets from A. It is easily seen that A7, NA" = 0 for m # n, and that U3, A” = U2 | Al = A.
The hypothesis (Pre-o-Add) can be applied to the sets A” and gives us that

Z Mo A”

But it is clear that A C Al C A,, hence that po(AL) < po(Ayn), Vn > 1. So we conclude

that
o0 o0
IJ’D(A) = Z/’I’O(A’II'/L) < Z /J'o(An)
n=1 n=1
as we wanted.

Proof that “(Pre-o-SubAdd) = (Pre-o-Add)”.

Let (A )22, be sets from A such that Ap, N A, = 0 for m # n and such that the union
A= UL, Ay, still belongs to A. We have to prove that po(A) = Y ooy to(An).

The inequality po(A) < 302 ;| po(Ay) is provided by the property (Pre-o-SubAdd) which
we have here as hypothesis. Thus we only have to prove the opposite inequality, that

> Z/J'O(An)' (1)



The series on the right-hand side of (1) can be written as follows:

§;/J'O(An) = 1\}1—?’100 (éﬂo(An)>

= lim po(A1U---UApN)
N—o0

(where at the second equality sign we used the fact that u, is finitely additive). But for

every N > 1 we have
po(A1 U+ UAN) < po(A), (2)

because A;U---UAyxy C A, and p, is an increasing set-function. By making N — oo in (2)
we thus find that '

[e.e]
Zﬂo(An) = lim po(A1U - UAN) < po(4),
el N—o00

as desired.



Problem 4. In this problem (X,d) is a metric space, B, is the Borel o-algebra of
(X,d), and p: B, — [0,00) is a finite positive measure.
(a) Prove that for every B € B, and every € > 0 there exist subsets D, F C X such
that (i) D is open and F' is closed;
(i) FCBCD;and
(i) w(D\F)<e.

(b) Prove that for every B € B, one has
1(B) = inf{u(D) | D open, D D B} = sup{u(F) | F closed, F C B}.
(c) Let v : B, — [0,00) be a finite positive measure which has the property that
w(D) = v(D) for every open subset D C X.
Does it follow that u = v (i.e. that u(B) = v(B) for all B € B,)? Justify your answer.

Solution. (a) Let us denote

]::={B€B

for every € > 0, there exist D, F C X
such that (i), (ii) and (iii) hold

We have to prove that 7 = B. In view of the definition of B, it will suffice to prove that
F is a o-algebra of subsets of X, and that F contains all the open sets. We divide the
verifications of these facts into several claims.

Claim 1. Let G be an open subset of X. Then G € F.

Verification of Claim 1. Fix € > 0. We have to find an open set D and a closed set F'
such that ' C G C D and such that u(D\ F) < e.

We know that every open set is of type F, hence there exists an increasing chain (F,)$2,
of closed subsets of X such that US2,F,, = G. From the continuity of y along increasing
chains it follows that limg,_,eo (Fr) = p(G), so there exists n, such that u(Fp,) > u(G)—e.
We can then take D = G and F' = F,, and all the required conditions will be satisfied
(where for (iii) we write that u(D \ F) = u(D) — u(F) = u(G) — u(Fp,) < ).

Claim 2. If B € F, then X\ B € F.

Verification of Claim 2. Fix € > 0. We have to find an open set D and a closed set F
such that F/ C X \ B C D and such that u(D\ F') < €. From the hypothesis that B € B we
know that we can find an open set D’ and a closed set F’ such that F/ C B C D’ and such
that u(D'\ F') < e. Let us put D := X\ F" and F := X\ D'. Then D is open, F is closed,
and by taking complements in the inclusions F' € B C D' we find that D C X\ B D F.
Moreover, some easy Boolean algebra shows that D\ F' = D'\ F’; so we have

WD\ F)=uD'\ F') <&,

and thus D and F have all the required properties.



Claim 8. 1f B, By, ..., By € F (for some n € N), then U, B; € F.

Verification of Claim 3. Let us denote U} ;B; =: B. Fix ¢ > 0. We have to find an
open set D and a closed set F' such that F/ C B C D and such that u(D \ F) < . From
the hypothesis that every B; is in B we infer the existence of open sets Dy,..., D, and of
.closed sets Fi,..., Fy such that

F;, C B; € D; and u(D; \ F;) <e/n, forl1<i<n.
Let us put D := U}, D; and F := U, F;. Then D is open, F is closed, and F' C B C D.
Moreover, some easy Boolean algebra shows that
which implies that
n
D\F) < 3 D\ B) <n-(efn) =c.
i=1

Hence D and F have all the required properties.

Claim 4. If (Bp)52., is an increasing chain of sets from F, then UX B, € F.

Verification of Claim 4. Let us denote USS ; B, =: B. Fix ¢ > 0. We have to find an
open set D and a closed set F' such that F' C B C D and such that (D \ F) < e.

Due to the fact that p is continuous along increasing chains, we have limy, oo t4(Bp) =
1(B), and hence we can find n, € N such that u(B,,) > u(B) —¢/4.

For every n > n,, due to the hypothesis that B, € F, we can find an open set D,, and
a closed set Fy, such that F,, C B, C D, and such that u(Dy \ F,) < £/4". Let us define
D =03, Dy and F := F,,. Then D is open and F is closed. We have moreover that

D2U, Byn=B, and FC B,, CB.
The verification of the claim will be completed if we can also show that u(D\ F) < €. Since
p(D\ F) = p(D) — u(F), it will be sufficient to verify that
) u(D) — p(B) < &/2 and u(B) — p(F) < g/2.

For the first of the two inequalities ((J) we argue as follows:
D\ B = (U,‘?f’:noDn> \ (ug‘;nan>

C UnZy,(Dn \ Br)
C UnZy, (Dn \ Fr),

hence
u(D) ~ u(B) = u(D\B) < 3 p(Du\Fu) < Y &< <.

For the second of the two inequalities ((0) we argue as follows:
w(B) = p(F) = u(B) — u(Fr,)
= (u(B) = u(Bn,)) + (4(Br,) — #(Fr,))
<e/4+ (1 Dn,) — 1(Fr,))
<egfd+e/4m
< ¢e/2. (End of verification of Claim 4).



Claim 5. F is a o-algebra of subsets of X.

Verification of Claim §. We have X € F from Claim 1 and the fact that X is an open
set. The fact that F is closed under taking complements was proved in Claim 2. Finally,
the fact that F is closed under countable unions follows from Claims 3 and 4. Indeed, let
(Br)2; be a sequence of sets from F. For every n > 1 let us put Cy, := UL, B;. Then
Cn € F,¥n > 1, due to Claim 3. Clearly, (C,)S2, is an increasing chain of sets, so Claim
4 gives that U2 ,C, € F. But it is obvious that US2,C,, = U2 By, so we have obtained
that U, B, € F.

The verification of Claim 5 completes the proof of part (a) of the problem.
(b) Fix a set B € B, and denote

a = sup{u(F) | F closed, F' C B},

B = inf{u(D) | D open, D D B}.

Since p(B) > p(F) for every closed set F' C B, we have p(B) > «a. Likewise, from the fact
that u(B) < u(D) for every open set D such that D D B, we infer that u(B) < 5. We have
to prove that the inequalities o < p(B) < @ are in fact equalities.

In order to prove that pu(B) < « and that u(B) > B, it suffices to prove that

() w(B) < a+¢e and pu(B) > B —¢, for every € > 0.

So fix an € > 0 for which we prove that () holds. From part (a) we know that we can find
an open set D and a closed set F' such that F¥ C B C D and such that u(D\ F') < e. By
using this D and F we then infer that

B < (D) =D\ F)+ u(F) < e+ pu(B),
and on the other hand that

w(B) < (D) = u(F) + p(D\ F) <+ e.
This completes the verification of ({).

(c) Yes, it does follow that p = v. Indeed, for every set B € B we use the statement of
part (b) for 4 and for v, and we find that

u(B) = inf{u(D) | D open, D 2 B} =inf{v(D) | D open, D 2 B} = v(B).



The property of p described in Problem 4(b) is called closed regularity. One also has a
property which is simply called regularity, and is defined as follows.

Definition. Let (X, d) be a metric space, let B, be the Borel o-algebra of (X, d), and
let 4 : B, — [0, 00) be a finite positive measure. We say that p is regular when the following
happens: for every B € B, one has that

p(B) = inf{u(D) | D open, D 2 B} = sup{u(K) | K compact, K C B}.

Problem 5 adresses a situation when regularity is guaranteed to hold for every finite
positive measure on B, .

Definition. A metric space (X,d) is said to be o-compact when there exist compact
subsets K1 C Ko C -+ C K, C -+ of X such that US2 K, = X.

Problem 5. Let (X, d) be a metric space which is o-compact, and let B, be the Borel
o-algebra of (X, d). Prove that every finite positive measure p : B, — [0,00) is regular.

Solution. Let p: B, — [0,00) be a finite positive measure. We have to prove that, for
every B € B,,, one has

#(B) = inf{u(D) | D open, D 2 B} (3)

and
pu(B) = sup{p(K) | K compact, K C B}. (4)

The fact that (3) holds was proved in Problem 4, here we only have to verify (4).

So fix a set B € B, and an € > 0; we have to prove that there exists a compact set
K C B such that pu(K) > u(B) —e.

In Problem 4 it was shown that p has the closed regularity property; this implies, in
particular, that we can find a closed set F' C B such that pu(F) > p(B) — /2. For the
compact sets (K7, )32, mentioned in the statement of this problem (with K,, C Kyy1,Vn > 1
and with U3, K, = X) we then have that

KiNFCKyNnFC---CK,NFC.--

and that
U (K NF) = (U Kp)NF=XNF=F

The continuity of p along increasing sequences implies that lim, oo u(Kp N F) = u(F),
hence we can find n, € N such that

#(En, N F) > u(F) — /2.

Then K := Kj,, N F is a compact subset of B, with u(K) > u(F) —¢/2 > u(B) —e. This
completes the verification of (4).



Problem 6. Let (X, d) be a metric space, let B, be the Borel o-algebra of (X, d), and
let 1 : B, — [0,00) be a finite positive measure which is regular. Prove that there exists
an open set U C X, uniquely determined, such that

(i) w(U) =0, and ‘
(ii) whenever D C X is open and has p(D) = 0, it follows that D C U.

[A comment related to this problem: properties (i) + (ii) show together that U is the
“largest open set of measure 0” for . Its complement X \ U is called the support of u.]

Solution. There exist for sure some open subsets D C X such that u(D) = 0 (for
instance D = (} has these properties). Let us consider the collection of sets

U:={D C X |D is open, and (D) = 0},

and let us put
U:= U D.
Deu

Then U is an open subset of X (because an arbitrary colection of open sets is still open),
and obviously has the property (ii) required in the statement of the problem.

In order to prove that the set U found above also has the required property (i), we first
make the following observation.

Claim. p(K) =0 for every compact set K such that K C U.

Verification of Claim. Fix a compact set K such that K C U. Then I{ is an open cover
for K, hence (by compactness) there exist finitely many sets Di,...,D, € U such that
K C U D;. But then

n .
p(K) <> u(Dy) =0,
i=1
and we get that u(K) = 0, as we wanted.

With the above claim in hand, we return to finalize the proof that U has property (i),
i.e. that u(U) = 0. Since it is given that the measure p is regular, we have

w(U) = sup{u(K) | K compact, K C U}.

But the above claim says that every u(K) considered in the sup is equal to 0; it follows
that ©(U) must be equal to 0 as well.

We are left to prove that U is uniquely determined by the properties (i) and (ii). In
other words, we have to prove that if U’ is an open subset of X which has properties (i)
and (ii), then U = U’. For such U’ we have

U’ open and U CU (by
p(U") = 0 (by property (i) for U’) property (ii) for U)

The similar argument where the roles of U and U’ are switched gives the inclusion U C U,
and we conclude that U = U’, as required.



(a)

(b)

10

In Problems 7 and 8 we use the metric space (X,d) where X is the set of all infinite
sequences of 0’s and 1’s, and the distance on X is defined by the formula:

2|z (k) — y(k
- ;t ()= ylh),

for z = (2(1),2(2),...,z(k),...) and y = (y(1),y(2),...,y(k),...) in X. (In general, for
a sequence s in X, we will use the notation “s(k)” for the kth component of s.) We will
accept without proof that (X, d) is a compact metric space.

For every m > 1 and p1,...,pm € {0,1} we will denote by Dy, .. p,. the subset of X
defined as follows: Dy, ,. = {z € X | z(1) = p1,...,z(m) = pn}. We will accept
without proof that every set Dy, . ... is at the same time open and closed in X. (We say
in short that Dy, 5. is a “clopen” subset of X.)

Problem 7. Let (X,d) be as above, and let us denote by D the collection of all the
subsets Dy, p,, of X:

~

D={Dp,pm | m21, p1,...pm € {0,1} }.

(a) Prove that every open subset of X can be written as a union of sets from D.
(b) Prove that the o-algebra generated by D is the Borel g-algebra of (X, d).

: !
Solution.

Let U be an open set in X, so for each 2 € U, there is an open ball B(z;r,) C U with
re > 0. Since each 7, > 0, there is a n, € N such that 5 < r;. For'each z € U, let
Dy = Dy, z(ne) € D. Note that each z € D, and if y E Dx, then

iz, ) Z!x(k‘) y(B)| _ Z Ix(k);cy(kﬂ < Z -}gz-%;<?"m,
k=ng-L1 = k:nw—l—ld -

s0y € B(z; 7). Hence, each D, C B(z;ry).
Therefore, U = Usep{z} © Usey Do € Uner Bl#72) S U, 50 U = UmEU

Thus, every open set in X is a union of sets from D. |

Note that D = | o_; Uyego, 1y {Dp} is a countable union of finite sets, so D is countable.
Let A denote the o-algebra generated by D. Let By denote the Borel o- algebra of
(X,d). By Problem 7a, any open set of X is a union of sets from D. Since D is
countable, it follows that every open set of X is a countable union of sets from D, and
hence is in A Thus, by definition of By being the smallest o- algebra containing all
open sets of X, we have that By C A. On the other hand, since every set in D is open,
we have that D C Bx. By definition of A being the smallest o-algebra containing all
sets in D, we have that A C Byx. Therefore, A = Bx. B



Problem 8. Let (X, d) be the same metric space as in Problem 7, and let By be the
Borel o-algebra of (X, d). By using the Caratheodory extension theorem, prove that there
exists a probability measure 4 : B, — [0, 1] such that u(Dp,, , ) =1/2™ for every m > 1
and every p1,...,pm € {0,1}. .

Solution.

To use Caratheodery’s theorem, we first require an algebra of sets and an appropriate
set function that can be shown to be g pre-measure.

Let’s call sets of the from Drp,,....pm> cylinders. First we can show that any two cylinders
either contain each other or are disjoint: .

Consider D! = D, ., and D? = Dagy....q- Without loss of generality, m < [.

Suppose we have the relation: D! ¢ D2 and D2 ¢ D!,

Let z € D' N D2 Then z = (p,, o Pmy ) and = (g1, ..., g, ...). It follows then that
P1 = q1,,Pm = gm. So, we actually have that D2 — Dps...pmsgmsrrq- But then we
have D? C D! which is a contradiction to our assumption. Thus, we must have D!, D? are
disjoint.

Now, consider the set: F = {A | Aisa cylinder} U {X} U {¢}
As our algebra, let’s consider the family: A= {UL A; | 4; € F}.

To show that this family is indeed an algebra, we note that F satisfies the following two
properties:

(1) Closure under finite intersections

(2) The complement of each element in F is a union of elements of F

To show (1): Let D!, D? be cylinders. As shown above, their intersection is either
D', D? or ¢. Thus, DN D? € F. If we look at intersections with X or ¢, we also get
something in F' again. ,

To show (2): Let A€ F. If A= X or A =0, then X\d ¢ F.

Now, suppose 4 = Dy, ,...pr We then have that

,,,,,

X—-A= D‘h U Dpl,QZ U Dpl,Pz,QS U..u Dpl,-u,z?k—lJJk

where ¢; is the opposite of p1. That is, if p; = 1 then ¢; = 0 and vice-versa,
Then we see that the complement of any cylinder is a union of cylinders,

By problem 1 on HW1, we have that A is an algebra.

Now, on A4, let us define the following function, g : A — [0, 00) by:
po(Uin, DY) = 301 210l

where |D;| is the length of (py, ..., Pr) in the expression Dy,,...on-

Let’s also define 1o(f) = 0 and Ho(X) = 1.

Before proving that up is a pre-measure, we must show that it is well-defined.

A



12

To do this, we first notice that any element of A can be represented as U, D? where
the D' are pairwise disjoint or we have that our element of A is just X or 0.

What remains to be shown is that if ur, D' = U§”=1Ej where the D' and E7 are
cylinders, then

po(UL, DY) = po(UJL, E7).

Consider D* C UDJ. Where D! = D, . We must have that D' C UEI.
Then one of the following two situations hold.
(1) There exists E/ C UEY such that D' ¢ EJ.
(2) D* = J_, E" where the E' C UL, E7. Also, the E' satisfy:
l
B = DP1)~~-;pk»Pk+1a~--apk+m

and the lengths of the sequences (P1, -, Pkym) are all the same. We have that p = 2™,

In case (1), we find that 27121 < 2-IB1 That is, we find that pg(D?) < uo(EY).

In case (2), we find that 2-18' = 9—(k+m)_ Thus, we have that

-

2m gm

Ho(BY) = 3 po(BY = " 270m) — 9=k — ;o (Dl
I=1 =1

Thus, we find that: MO(U{-‘:IDZ') = Z?=1 2—IDil

Using this, we find that:

po(UR, D) < po (UL, E7).

But then, we note that starting with D or E was arbitrary. Repeating the same pro-
cedure with E and D interchanged, we find that: po(UFL, B7) < po(UP; DY). This gives us
po(UJLy E7) = po(Up, D). ’ '

‘Therefore, our set function pg is indeed well defined.

In order to show that our ug is a pre-measure on the algebra A, we need to show that
" po satisfies a certain pre-measure criterion.
- From a lemma shown in lecture, it suffices to verify:

For every A € A we have that:

(1) po(A) = inf{uo(U) | U € A, A Cint(U)}

and :
(2) po(A) =sup{po(H) | He A, HC A and H is compact}

To verify (1):

Let A € A. For now, suppose A # X or . Then A = U, Dt Since A is a union of open
sets, A is also open. Thus, we have that ug(A) > inf{uo(U) | U € A, A Cint(U)}. Now,
suppose we have that A C U € A (we have that A C int(U) since both 4 and U are open).
By the above work, when showing g is well defined, we must have that to(A) < wo(U).
Taking the infimum over all U, we find that uo(4) < inf {no(U) | U € A, ACint(U)} and
so we get equality. '
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If A= X, let U be such that X C U. The only possible choice for U is X. Thus,
po(X) =inf{u(U) |Uec A, AcC int(U)}.

To verify (2):

Let A € A Since A is closed and X is compact, A is also compact. Thus, we
~can take H = A. This gives us that ug(4) < po(A) = sup{uo(H) | H € A, H C
A and H is compact}. To get the other inequality, let H € A such that H C A. Since
H € A, it is closed, so therefore we may write H = H., Again, by the above work, since
H € Aand H C A we have that puo(H) < 1fo(A). Thus, taking the supremum over all such
H we find that: sup{uo(H) | H € A, H C A and H is compact} < uo(A). Thus, we have
equality here as well. -

Thus, po is a pre-measure on our algebra A. As a result, by Caratheodory’s theorem, 1
extends to a measure on a o-algebra containing A. Since this is an extension, we retain that

1(X) = po(X) =1 and (DY) = po(DYy = 271Dl 8o, 14 is indeed a probability measure

that is an extension of yg.

.
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