PMath 451/651, Fall Term 2012

Homework Assignment 3 – Solutions

Problem 1 fills in the proof of Lemma 6.8 from Lecture 6. Recall that $\mathcal{B}_{\mathbf{R}}$ is the Borel σ -algebra of (\mathbb{R}, d) , where d is the usual distance on \mathbb{R} . Recall moreover that in Lecture 6 we denoted by \mathcal{E} the algebra of half-open intervals of \mathbb{R} . This is the collection of all finite unions of sets from \mathcal{J} , where we put

$$\mathcal{J} = \{\emptyset\} \cup \{(a,b] \mid a < b \text{ in } \mathbb{R}\} \cup \{(-\infty,b] \mid b \in \mathbb{R}\} \cup \{(a,\infty) \mid a \in \mathbb{R}\} \cup \{\mathbb{R}\}.$$

Problem 1. (a) Prove that $\mathcal{E} \subseteq \mathcal{B}_{\mathbb{R}}$.

- (b) Let us put $\mathcal{U} := \{(-\infty, b] \mid b \in \mathbb{R}\}$. (Note that $\mathcal{U} \subseteq \mathcal{J}$; hence, by part (a), \mathcal{U} is a subset of \mathcal{E}). Prove that the σ -algebra generated by \mathcal{U} is equal to $\mathcal{B}_{\mathbb{R}}$.
- (c) Prove that, as a consequence of parts (a) and (b), the σ -algebra generated by \mathcal{E} is equal to $\mathcal{B}_{\mathbb{R}}$.

Solution.

- (a) Since any element from $\mathcal E$ is a finite union of elements from $\mathcal J$ and that $\mathcal B_{\mathbb R}$ is closed under countable unions, it suffices to show that $\mathcal J\subseteq\mathcal B_{\mathbb R}$.

 Let $X\in\mathcal J$. If $X=\emptyset$ or $X=(a,\infty)$ for some $a\in\mathbb R$, then X is open and is trivialy in $\mathcal B$. If $X=(-\infty,b]$ for some $b\in\mathbb R$, then X is the complement of $(a,\infty)\subseteq\mathcal B_{\mathbb R}$ and is therefore in $\mathcal B_{\mathbb R}$ as well. We are now only left with the case X=(a,b] for some a< b in $\mathbb R$. But in that case $X=(\mathbb R\setminus(b,\infty))\cap(a,\infty)$, which is in $\mathcal B_{\mathbb R}$ since we only did complements and intersections of open sets. Therefore $\mathcal J\subseteq\mathcal B_{\mathbb R}$, hence $\mathcal E\subseteq\mathcal B_{\mathbb R}$.
- (b) Let \mathcal{C} be the σ -algebra generated by \mathcal{U} . Since $\mathcal{U} \subseteq \mathcal{E} \subseteq B_{\mathbb{R}}$, from the previous assignment, we have that $\mathcal{C} \subseteq \mathcal{B}_{\mathbb{R}}$. Again, from the privious assignment, it suffices to show that all the open sets are in \mathcal{C} to show that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{C}$ and have $\mathcal{B}_{\mathbb{R}} = \mathcal{C}$ as desired. But if a set is open, it can be written as the countable union of open intervals, so it suffices to show that all open intervals are in \mathcal{C} to get that all open sets are in \mathcal{C} . But, for any a < b in \mathbb{R} , we have that $(a, b) = \left(\mathbb{R} \setminus (-\infty, a]\right) \cap \bigcup_{n=1}^{\infty} (-\infty, b \frac{1}{n}]$, which is in \mathcal{C} . So $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{C}$, so $\mathcal{B}_{\mathbb{R}} = \mathcal{C}$.
- (c) Since $\mathcal{U} \subseteq \mathcal{E}$, we have that the σ -algebra generated by \mathcal{U} , which by part (b) is equal to $\mathcal{B}_{\mathbb{R}}$, is a subset of the σ -algebra generated by \mathcal{E} . And since, by part (a), $\mathcal{E} \subseteq \mathcal{B}_{\mathbb{R}}$, we have that the σ -algebra generated by \mathcal{E} is a subset of $\mathcal{B}_{\mathbb{R}}$. Therefore, the σ -algebra generated by \mathcal{E} is equal to $\mathcal{B}_{\mathbb{R}}$.

In Problem 2, (X, d) is a metric space and $\varphi : X \to X$ is a homeomorphism (which means that φ is bijective, and that both φ and its inverse $\varphi^{-1} : X \to X$ are continuous).

Problem 2. (a) Let \mathcal{B}_X be the Borel σ -algebra of (X, d). Prove that if $B \in \mathcal{B}_X$, then $\varphi(B) \in \mathcal{B}_X$.

(b) Let $\mu: \mathcal{B}_X \to [0, \infty)$ be a finite positive measure, and suppose that

$$\mu(\varphi(D)) = \mu(D)$$
 for every open set $D \subseteq X$.

Prove that $\mu(\varphi(B)) = \mu(B)$ for every $B \in \mathcal{B}_X$.

Solution. A> Fix BEBx, since
$$\varphi': X \to X$$
 continuous

then by corollary 7.5. then $\varphi'': 3(Bx, Bx)$ -measurable
thus by definition, $\varphi(B) \in Bx$

(b) By Assignment 2 Problem 4b, for every $B \in \mathcal{B}_X$,

$$\mu(B) = \inf\{\mu(D) \mid D \text{ open }, D \supseteq B\}.$$

Since $\varphi^{-1}(D)$ is open for every open set D and conversely, for every open set U, $\varphi(U)$ is open and $\varphi^{-1}(\varphi(U)) = U$, φ^{-1} maps the set of all open subsets of X bijectively to itself, so we have

$$\mu(B) = \inf\{\mu(\varphi^{-1}(D)) \mid \varphi^{-1}(D) \text{ open }, \varphi^{-1}(D) \supseteq B\}.$$

By assumption, $\mu(\varphi^{-1}(D)) = \mu(\varphi(\varphi^{-1}(D))) = \mu(D)$. Also, $\varphi^{-1}(D)$ is open iff D is open, since both φ and φ^{-1} are continuous. Moreover, $D = \varphi(\varphi^{-1}(D)) \supseteq \varphi(B) \Leftrightarrow \varphi^{-1}(D) \supseteq B$, since φ is a bijection. Thus,

$$\mu(B) = \inf\{\mu(D) \mid D \text{ open }, D \supseteq \varphi(B)\}.$$

But again by Assignment 2 Problem 4b, we have that

$$\mu(\varphi(B)) = \inf\{\mu(D) \mid D \text{ open }, D \supseteq \varphi(B)\}.$$

Hence, $\mu(B) = \mu(\varphi(B))$ for every $B \in \mathcal{B}_X$.

For every $A \subseteq \mathbb{R}$ and $t \in \mathbb{R}$ we denote $A + t := \{a + t \mid a \in A\} \subseteq \mathbb{R}$ (the translation of A by t). Note that, as a special case of Problem 2(a), one has $A + t \in \mathcal{B}_{\mathbb{R}}$ whenever $A \in \mathcal{B}_{\mathbb{R}}$ and $t \in \mathbb{R}$ (where $\mathcal{B}_{\mathbb{R}}$ is the Borel σ -algebra of \mathbb{R} , same as in Problem 1).

We will denote the Lebesgue measure on \mathbb{R} by λ . In the terminology used in Lecture 6, this is the Lebesgue-Stieltjes measure $\lambda:\mathcal{B}_{\mathbb{R}}\to[0,\infty]$ which is uniquely determined by the requirement that its centered Stieltjes function is $G_{\lambda}(t)=t$.

We will also use the (trivial) fact that positive measures can be amplified by scalars in $[0,\infty)$. That is: if (X,\mathcal{M}) is a measurable space, if $\mu:\mathcal{M}\to[0,\infty]$ is a positive measure, and if c is a constant in $[0,\infty)$, then one can define a new positive measure $c\mu:\mathcal{M}\to[0,\infty]$ by putting $(c\mu)(A):=c\cdot\mu(A), \ \forall A\in\mathcal{M}$.

Problem 3. Let $\mu: \mathcal{B}_{\mathbb{R}} \to [0, \infty]$ be a Lebesgue-Stieltjes measures which is translation-invariant, in the sense that $\mu(B+t) = \mu(B)$, $\forall B \in \mathcal{B}_{\mathbb{R}}$ and $t \in \mathbb{R}$. Denote $\mu((0,1]) =: c \in [0,\infty)$. Prove that $\mu = c \cdot \lambda$, where λ is the Lebesgue measure.

Solution

Let G_{μ} be the centered Stieltjes function of μ , so

$$G_{\mu}(t) = \begin{cases} \mu((0,t]) & \text{if } t > 0 \\ 0 & \text{if } t = 0 \\ -\mu((t,0]) & \text{if } t < 0 \end{cases}$$

Now, for each $n \in \mathbb{N}$,

 $\bigsqcup_{k=0}^{n-1} \left(\frac{k}{n}, \frac{k+1}{n} \right] = (0,1].$

Since μ is translation invariant, μ assigns the same measure to each of the sets in the above disjoint union. Since $\mu((0,1]) = c$, it follows that $G_{\mu}(\frac{1}{n}) = \mu((0,\frac{1}{n}]) = \frac{c}{n}$. Now, for any $m \in \mathbb{N}$,

$$G_{\mu}\left(\frac{m}{n}\right) = \mu\left(\left(0, \frac{m}{n}\right]\right) = \mu\left(\bigsqcup_{k=0}^{m-1} \left(\frac{k}{n}, \frac{k+1}{n}\right]\right) = \sum_{k=0}^{m-1} \mu\left(\left(\frac{k}{n}, \frac{k+1}{n}\right]\right) = \sum_{k=0}^{m-1} \mu\left(\left(0, \frac{1}{n}\right]\right)$$

$$= c \cdot \frac{m}{n}.$$

$$G_{\mu}\left(-\frac{m}{n}\right) = -\mu\left(\left(-\frac{m}{n}, 0\right]\right) = -\mu\left(\bigsqcup_{k=0}^{m-1} \left(-\frac{k+1}{n}, -\frac{k}{n}\right]\right) = -\sum_{k=0}^{m-1} \mu\left(\left(-\frac{k+1}{n}, -\frac{k}{n}\right]\right)$$

$$= -\sum_{k=0}^{m-1} \mu\left(\left(0, \frac{1}{n}\right]\right) = -c \cdot \frac{m}{n}.$$

Thus, G_{μ} agrees with cG_{λ} on \mathbb{Q} . Since cadlag functions are continuous from the right, $G_{\mu} - cG_{\lambda}$ is still continuous from the right and is identically zero on \mathbb{Q} . However, for any $x \in \mathbb{R}$, there is a sequence of rationals $\{x_n\}_{n \in \mathbb{N}}$ converging to x from above, and since $(G_{\mu} - cG_{\lambda})(x_n) = 0$ for all $n \in \mathbb{N}$, by continuity from the right, it follows that $(G_{\mu} - cG_{\lambda})(x) = 0$. Thus, $G_{\mu} - cG_{\lambda} \equiv 0$, so $G_{\mu} \equiv cG_{\lambda}$, so $\mu = c\lambda$.

In the Bonus Problem 4 we consider the compact metric space (X,d) which was used in Problems 7 and 8 of homework assignment 2. Recall that the elements of X are infinite sequences of 0's and 1's, and that for a sequence $x \in X$ we use the notation "x(k)" for the k-th component of x. We will look at the probability space (X, \mathcal{B}_X, μ) , where \mathcal{B}_X is the Borel σ -algebra of (X, d) and $\mu : \mathcal{B}_X \to [0, 1]$ is the probability measure constructed in Problem 8 of homework assignment 2.

Bonus Problem 4. Let (X, \mathcal{B}_X, μ) be as above. Let us agree to say that a sequence $x \in X$ is a "suspicious-1" sequence when it has the following property:

for every $\ell \in \mathbb{N}$, there exists $k \in \mathbb{N}$ such that $x(k+1) = x(k+2) = \cdots = x(k+\ell) = 1$.

Let $S \subseteq X$ be the set of all suspicious-1 sequences.

- (a) Prove that $S \in \mathcal{B}_x$.
- (b) Determine what is $\mu(S)$. (In words: calculate the probability that a random sequence of 0's and 1's is a suspicious-1 sequence.)

Solution.

(a) Let T_n denote the set of all elements such that every string of consecutive 1 has length at most n. We show that T_n is closed. Assume the contrary holds. And suppose that $\{x_k\}_{k=1}^{\infty} \subset T_n$ converges to some $x \notin T_n$. So x contains a string of consecutive 1's of length greater than n. So suppose that $x(t) = x(t+1) = \cdots x(t+n) = 1$ for some t. We note from previous assignment that $x_k \to x$ implies $x_n(k) \to x(k)$ pointwise. Now pick x_M close enough to x such the their first t+n terms coincide. This is impossible since x contains a string of consecutive 1's of length n+1 but x_M does not. Hence T_n is closed.

We further let $T = \bigcup_{n=1}^{\infty} T_n$. We note that $T \in \mathcal{B}_X$ since each T_n is closed. Moreover, T is precisely the set of elements such that one can find some $l \in \mathbb{N}$ and no string of consecutive 1's has length more than l. That is $T = S^c$. It follows that $S \in \mathcal{B}_X$ since $T \in \mathcal{B}_X$.

(b) (Reference for generating series used in the proof:

http://aofa.cs.princeton.edu/lectures/09Strings.pdf) We will assume basic knowledge of combinatorics and use notations from assignment 2. First let us define, for all possible $k, n \in \mathbb{N}$, $D_{n,k}$ to be the set of all element such that the first k-1 terms form a string with no n consecutive 1's, then followed by 0, and then a string of n number of 1's. Then we note that $D_{k,n} \cap D_{j,n} = \emptyset$ if $k \neq j$. Moreover,

$$T_n^c = D_{\underbrace{1, \dots, 1}} \cup \bigcup_{k=1}^{\infty} D_{k,n}$$

The RHS is included in the LHS is clear. For each element of T_n^c , there exits some l such that the there are n consecutive 1's starting at the l-th positive. Take k to be the minimal of all such l, then this element lies in $D_{k,n}$. Finally, observe that the union above is disjoint. We note that

$$D_{k,n} = \bigcup D_{\underbrace{*}_{k-1},0,\underbrace{1,...,1}_{n}}$$

(22

[Solution to Problem 4, continued]

where * is some string of length k-1 with no n consecutive 1's. Again, note that the union above is disjoint. Since there are finitely many choice for *, we have

$$\mu(D_{k,n}) = c_{k,n} \frac{1}{2^{k+n}}$$

where $c_{k,n}$ is the number of ways of choosing *, that is, the number of strings of length k-1 with no n consecutive 1's. So let $S_{\widehat{\mathcal{E}}}(x)$ be the generating functions for $c_{k,n}$ (ie $c_{k,n} = \langle x^{\widehat{n}}, S_{\widehat{\mathcal{E}}}(x) \rangle$). We note that a binary string with no n consecutive 1's is either a binary string of length less than n containing all 1 or such a string followed by 0 and followed by a binary string with no n consecutive 1's. So if we take the weight function to be the length of the string, then

$$S_n(x) = (1 + x + \dots + x^{n-1})(1 + xS_n(x))$$

Solve to get

$$S_n(x) = \frac{1 - x^n}{1 - 2x(-x^n)}$$

Then we note

$$\mu(T_n^c) = \mu(D_{1,\dots,1}) + \sum \mu\left(\bigcup_{k=1}^{\infty} D_{k,n}\right)$$

$$= \frac{1}{2^n} + \frac{1}{2^{n+1}}S_n(1/2)$$

$$= \frac{1}{2^n} + 1 - \frac{1}{2^n}$$

$$= 1$$

Now note that

$$S = \bigcap_{n=1}^{\infty} T_n^c$$

and moreover $T_n^c \supset T_{n+1}^c$ for all n since string of n+1 consecutive 1's certainly contains a string of n consecutive 1's. It follows since μ is a finite measure, we have

$$\mu(S) = \lim_{n \to \infty} \mu(T_n^c) = 1$$