PMath 451/651, Fall Term 2012

Homework Assignment 4 – Solutions

Problem 1. Let (X, \mathcal{M}) be a measurable space, and let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in Bor (X, \mathbb{R}) . Consider the following subsets of X:

$$\begin{split} A &:= \{x \in X \mid \lim \sup_{n \to \infty} f_n(x) = \infty\}. \\ B &:= \{x \in X \mid \lim \sup_{n \to \infty} f_n(x) = -\infty\}. \\ C &:= \{x \in X \mid \lim \inf_{n \to \infty} f_n(x) = \infty\}. \\ D &:= \{x \in X \mid \lim \inf_{n \to \infty} f_n(x) = -\infty\}. \\ E &:= \{x \in X \mid \lim_{n \to \infty} f_n(x) \text{ exists and is finite}\}. \end{split}$$

Prove that $A, B, C, D, E \in \mathcal{M}$.

Solution.

Argument for the set A. We will show, equivalently, that $X \setminus A \in \mathcal{M}$. It is immediate that an element $x \in X$ belongs to $X \setminus A$ if and only if the sequence $(f_n(x))_{n=1}^{\infty}$ is bounded above. So then we can write:

$$X \setminus A = \{x \in X \mid \exists k \in \mathbb{N} \text{ such that } f_n(x) \leq k \text{ for all } n \geq 1\}$$

$$= \bigcup_{k=1}^{\infty} \{x \in X \mid f_n(x) \leq k \text{ for all } n \geq 1\}$$

$$= \bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \{x \in X \mid f_n(x) \leq k\}$$

$$= \bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} f_n^{-1} \Big((-\infty, k] \Big).$$

For every $n, k \in \mathbb{N}$ we have that $f_n^{-1}((-\infty, k]) \in \mathcal{M}$, because f_n is a Borel function and $(-\infty, k]$ is a Borel set. Hence $X \setminus A$ can be obtained by starting with sets from \mathcal{M} and by performing countable unions and intersections. This implies that $X \setminus A \in \mathcal{M}$, as required.

Argument for the set B. We write

$$B = \{x \in X \mid \lim \sup_{n \to \infty} f_n(x) = -\infty\}$$

$$= \{x \in X \mid \lim_{n \to \infty} f_n(x) = -\infty\}$$

$$= \bigcap_{k=1}^{\infty} \{x \in X \mid \exists n_o \in \mathbb{N} \text{ such that } f_n(x) < -k \text{ for all } n \ge n_o\}$$

$$= \bigcap_{k=1}^{\infty} \left(\bigcup_{n_o=1}^{\infty} \{x \in X \mid f_n(x) < -k \ \forall n \ge n_o\} \right)$$

$$= \bigcap_{k=1}^{\infty} \left(\bigcup_{n_o=1}^{\infty} \bigcap_{n=n_o}^{\infty} f_n^{-1}((-\infty, -k)) \right).$$

We know that every set of the form $f_n^{-1}((-\infty, -k))$ is in \mathcal{M} , because the f_n 's are Borel functions. Since B can be obtained from sets of this form by performing countable unions and intersections, it follows that B belongs to \mathcal{M} as well.

Argument for the set C. The set C can be written in the form

$$C = \{x \in X \mid \lim \sup_{n \to \infty} (-f_n)(x) = -\infty\};$$

so the fact that $C \in \mathcal{M}$ follows from an argument identical to the one shown for the set B, but where we use the sequence of functions $(-f_n)_{n=1}^{\infty}$.

Argument for the set D. The set D can be written in the form

$$D = \{x \in X \mid \lim \sup_{n \to \infty} (-f_n)(x) = \infty\};$$

so the fact that $D \in \mathcal{M}$ follows from an argument identical to the one shown for the set A, but where we use the sequence of functions $(-f_n)_{n=1}^{\infty}$.

Argument for the set E. We have

$$\begin{split} E &= \{x \in X \mid \lim_{n \to \infty} f_n(x) \text{ exists and is finite } \} \\ &= \{x \in X \mid \text{the sequence } (f_n(x))_{n=1}^{\infty} \text{ is Cauchy} \} \\ &= \cap_{k=1}^{\infty} \{x \in X \mid \exists n_o \text{ such that } |f_m(x) - f_n(x)| < 1/k \text{ for all } m, n \ge n_o \} \\ &= \cap_{k=1}^{\infty} \Big(\cup_{n_o=1}^{\infty} \{x \in X \mid -1/k < f_m(x) - f_n(x) < 1/k, \ \forall m, n \ge n_o \} \Big) \\ &= \cap_{k=1}^{\infty} \Big(\cup_{n_o=1}^{\infty} \cap_{m,n=n_o}^{\infty} g_{m,n}^{-1} ((-1/k,1/k)) \Big), \end{split}$$

where for every $m, n \in \mathbb{N}$ we denoted $f_m - f_n =: g_{m,n}$.

The functions $g_{m,n}$ are Borel (because the f_n 's are so), hence that every set of the form $g_{m,n}^{-1}((-1/k,1/k))$ is in \mathcal{M} . Since E can be obtained from sets of this form by performing countable unions and intersections, we conclude that E belongs to \mathcal{M} as well.

Problem 2. Let (X, \mathcal{M}) be a measurable space, and let $(P_n)_{n=1}^{\infty}$ be a sequence of subsets of X such that

- (i) $P_n \in \mathcal{M}, \forall n \geq 1;$
- (ii) $P_n \cap P_m = \emptyset$ for $n \neq m$; and
- (iii) $\bigcup_{n=1}^{\infty} P_n = X$.

On the other hand let $(f_n)_{n=1}^{\infty}$ be a sequence of functions from Bor (X, \mathbb{R}) . We create a new function $f: X \to \mathbb{R}$ by the following rule:

$$\left\{ \begin{array}{l} \text{For every } x \in X \text{ we pick the unique } n \in \mathbb{N} \text{ such that } x \in P_n, \\ \text{and we define } f(x) := f_n(x). \end{array} \right.$$

Prove that $f \in Bor(X, \mathbb{R})$.

[Comment related to Problem 2: The procedure used to define f is called "patching" – we are patching together the functions f_n , by using the partition of X into the sets P_n .]

Solution. We fix a Borel subset $S \subseteq \mathbb{R}$ for which we will prove that $f^{-1}(S) \in \mathcal{M}$. We observe that

$$f^{-1}(S) = f^{-1}(S) \cap X$$

$$= f^{-1}(S) \cap \left(\cup_{n=1}^{\infty} P_n \right)$$

$$= \cup_{n=1}^{\infty} \left(f^{-1}(S) \cap P_n \right)$$

$$= \cup_{n=1}^{\infty} \left(f_n^{-1}(S) \cap P_n \right);$$

at the last equality sign we used that f coincides with f_n on P_n , which implies that

$$f^{-1}(S) \cap P_n = \{x \in P_n \mid f(x) \in S\} = \{x \in P_n \mid f_n(x) \in S\} = f_n^{-1}(S) \cap P_n.$$

For every $n \geq 1$ we have that $f_n^{-1}(S) \in \mathcal{M}$, because $f_n \in \text{Bor}(X,\mathbb{R})$. Since it is given that $P_n \in \mathcal{M}$, we infer that $f_n^{-1}(S) \cap P_n$ is in \mathcal{M} as well. Finally, since \mathcal{M} is closed under countable unions, it follows that

$$f^{-1}(S) = \bigcup_{n=1}^{\infty} \left(f_n^{-1}(S) \cap P_n \right) \in \mathcal{M},$$

as we wanted.

Definition. Let (X, \mathcal{M}) be a measurable space.

 1^o A function $f: X \to \mathbb{R}$ is said to be *simple* when it only takes finitely many values (the image f(X) is a finite subset of \mathbb{R}). We will use the notation

$$\operatorname{Bor}_s(X,\mathbb{R}) := \{ f \in \operatorname{Bor}(X,\mathbb{R}) \mid f \text{ is simple} \}.$$

 2^o Let A be a subset of X. We will use the notation I_A for the indicator function of A. That is, $I_A:X\to\mathbb{R}$ is the function defined by

$$I_A(x) = \left\{ \begin{array}{ll} 1, & \text{if } x \in A \\ 0, & \text{if } x \in X \setminus A. \end{array} \right.$$

Problem 3. Let (X, \mathcal{M}) be a measurable space.

- (a) Prove that $Bor_s(X,\mathbb{R})$ is a unital subalgebra of the algebra of functions $Bor(X,\mathbb{R})$.
- (b) Let A be a subset of X. Prove that $I_A \in \text{Bor}_s(X, \mathbb{R})$ if and only if $A \in \mathcal{M}$.
- (c) Let f be a function in $\operatorname{Bor}_s(X,\mathbb{R})$, where f is not identically equal to zero. Prove that one can write f as a linear combination

$$f = \alpha_1 I_{A_1} + \dots + \alpha_n I_{A_n},$$

where $n \ge 1$ and where all the conditions stated below are satisfied:

- $\alpha_1, \ldots, \alpha_n \in \mathbb{R} \setminus \{0\}$ are such that $\alpha_i \neq \alpha_j$ for $i \neq j$;
- A_1, \ldots, A_n are non-empty sets from \mathcal{M} , such that $A_i \cap A_j = \emptyset$ for $i \neq j$.
- (d) Prove the equality $\operatorname{Bor}_s(X,\mathbb{R}) = \operatorname{span}\{I_A \mid A \in \mathcal{M}\}$ (where "span" is the notation for the linear span of a set of functions).

Solution. (a) We see that $1 = I_X$ is a constant function, hence continuous and hence in $\operatorname{Bor}_s(X,\mathbb{R})$. Suppose that $f,g \in \operatorname{Bor}_s(X,\mathbb{R})$. Then $f,g \in \operatorname{Bor}(X,\mathbb{R})$ and by a proposition from class, $fg, f+g \in \operatorname{Bor}(X,\mathbb{R})$. Also, by assumption, $|f(X)| = n < \infty$ and $|g(X)| = m < \infty$. It is clear that $|fg(X)| \leq nm < \infty$ and $|(f+g)(X)| \leq nm < \infty$, so fg and f+g are simple. Hence, $fg, f+g \in \operatorname{Bor}_s(X,\mathbb{R})$. Moreover, for $\alpha \in \mathbb{R}$, we see that $\alpha f \in \operatorname{Bor}(X,\mathbb{R})$ from class, and clearly αf is simple as well, so $\alpha f \in \operatorname{Bor}_s(X,\mathbb{R})$. Hence, $\operatorname{Bor}_s(X,\mathbb{R})$ is a unital subalgebra of $\operatorname{Bor}(X,\mathbb{R})$. \square

(b) (\Rightarrow) Since $I_A \in \operatorname{Bor}_s(X,\mathbb{R})$, we have in particular that $A = I_A^{-1}(\{1\}) = I_A^{-1}([1,\infty)) \in \mathcal{M}$ by a proposition from class. Hence, $A \in \mathcal{M}$. (\Leftarrow) Suppose that $A \in \mathcal{M}$. Then let $a \in \mathbb{R}$. If a > 1 then $I_A^{-1}([a,\infty)) = \emptyset \in \mathcal{M}$. If $0 < a \le 1$, then $I_A^{-1}([a,\infty)) = A \in \mathcal{M}$. If $a \le 0$, then $I_A^{-1}([a,\infty)) = X \in \mathcal{M}$, so $I_A \in \operatorname{Bor}(X,\mathbb{R})$. Therefore, since I_A is clearly simple, we have $I_A \in \operatorname{Bor}_s(X,\mathbb{R})$. \square

(c). Since $f \in Bore(X, \mathbb{R})$, f is simple and $f(\phi) = 0$.

Also $f \neq 0$, $\exists n \in \mathbb{N}$, $n \geqslant 1$ sit $f(X)/\{0\} = \{d_1, \dots, d_n\}$ with $d_i \neq d_j$, $\forall i \neq j$.

Let $A_i = f^{\dagger}(d_i)$, $b \in \mathbb{N}$, then

As $f \in Bor(X, \mathbb{R})$, $\{d_i\} \in B_{i}\mathbb{R}$, $A_i = f^{\dagger}(\{d_i\}) \in \mathbb{M}$, $b \in \mathbb{N}$.

Also, for $i \neq j$, $AinAj = f^{\dagger}(\{d_i\}) \cap f^{\dagger}(\{d_j\})$ $= f^{\dagger}(\{d_i\} \cap \{d_j\})$ $= f^{\dagger}(\{d_i\} \cap \{d_j\})$

For every i, wish, $\exists x \in X$ st $f(x) = \forall i$ as $f(X) / \{0\} = \{d_1, \dots, d_n\}$. So, $x \in Ai \Rightarrow Ai$ is non-empty.

for g: = d, IA, + ... + dn IAn .

As Ai & M , I & i & n , by cb) , I Ai & Borg (X,R).

By (a), $g = x_1 I_{A_1} + \cdots + x_n I_{A_n} \in Bors(X, R)$, since it is closed under algebra operations.

For any $x \in X$ if $x \in Ai$, f(x)=di, $g(x)=0+-t0+di\cdot (t0+--t0)=di=f(x)$, $i \le i \le n$

it x & x/U, A; , fcx)=0; g(x)=0+...+0=0=fcx).

By uniqueness in Bors (X,R), f=g or $f=d_1I_{A_1}+\cdots+d_nI_{A_n}$.

(d). If f = 0, then $f = I\phi$, $\phi \in M$. \Rightarrow $f \in \text{span}[I_A \mid A \in M]$ If f is not equal zero everywhere, by (c), we have $f = \stackrel{\frown}{I} \times i I_{A_i} \in \text{span}[I_A \mid A \in M]$ $\Rightarrow \text{Bor}_{\mathcal{C}}(X, R) \subseteq \text{span}[I_A \mid A \in M]$; Also, by (b), $I_A \in \text{Bor}_{\mathcal{C}}(X, R)$, as $A \in M$, and by (a), $\Rightarrow \text{Bor}_{\mathcal{C}}(X, R)$ is a subalgebra $\Rightarrow \text{span}[I_A \mid A \in M] \subseteq \text{Bor}_{\mathcal{C}}(X, R) \Rightarrow \text{Bor}_{\mathcal{C}}(X, R) = \text{span}[I_A \mid A \in M]$. \Rightarrow

1+3/3

Let us consider again the space of simple Borel functions $\operatorname{Bor}_s(X,\mathbb{R})$ which appeared in Problem 3. Let us also recall that a function $f:X\to\mathbb{R}$ is said to be bounded when there exists r>0 such that |f(x)|< r for all $x\in X$. The next problem shows that every bounded Borel function can be written as a uniform limit of functions from $\operatorname{Bor}_s(X,\mathbb{R})$.

Problem 4. Let (X, \mathcal{M}) be a measurable space, let f be a bounded function in $\text{Bor}(X, \mathbb{R})$, and let ε be a positive number. Prove that there exists a function $g \in \text{Bor}_s(X, \mathbb{R})$ such that $|f(x) - g(x)| < \varepsilon$ for every $x \in X$.

Solution. We fix a constant C > 0 such that |f(x)| < C for all $x \in X$. Let $n \in \mathbb{N}$ be such that $C/n < \varepsilon$, and let us partition the interval (-C, C] into 2n consecutive half-open intervals J_1, J_2, \ldots, J_{2n} of length C/n. That is:

$$J_1 = (-C, -C + \frac{C}{n}], J_2 = (-C + \frac{C}{n}, -C + \frac{2C}{n}], \dots, J_{2n} = (-C + \frac{(2n-1)C}{n}, C].$$

For every $1 \le k \le 2n$ let us denote $A_k := f^{-1}(J_k) \subseteq X$. The sets A_1, \ldots, A_{2n} are in \mathcal{M} , because f is a Borel function. We observe that

$$\bigcup_{k=1}^{2n} A_k = \bigcup_{k=1}^{2n} f^{-1}(J_k) = f^{-1}\left(\bigcup_{k=1}^{2n} J_k\right) = f^{-1}\left((-C, C]\right) = X.$$

Moreover, the sets A_k are pairwise disjoint:

$$A_j \cap A_k = f^{-1}(J_j) \cap f^{-1}(J_k) = f^{-1}(J_j \cap J_k) = f^{-1}(\emptyset) = \emptyset, \text{ for } j \neq k.$$

Consider the function $q \in \text{Bor}_s(X, \mathbb{R})$ defined as

$$g:=\sum_{k=1}^{2n}\Bigl(-C+\frac{kC}{n}\Bigr)I_{A_k}$$

(where I_{A_k} stands, as usual, for the indicator function of the set A_k). We claim that g has the property required in the problem. Indeed, let x be an arbitrary element of X. Since the sets $(A_k)_{k=1}^{2n}$ are mutually disjoint and cover X, there exists a unique k such that $x \in A_k$. Since A_k is defined as $f^{-1}(J_k)$, we thus have

$$f(x) \in J_k = (-C + \frac{(k-1)C}{n}, -C + \frac{kC}{n}].$$

On the other hand from the definition of g it follows that

$$g(x) = -C + \frac{kC}{n},$$

and it is then clear that

$$|f(x) - g(x)| \le \frac{C}{n} < \varepsilon,$$

as required.