PMath 451/651, Fall Term 2012 ## Homework Assignment 5 – Solutions **Notation.** Let (X, \mathcal{M}) be a measurable space. We denote $\mathrm{Bor}_b(X,\mathbb{R}) := \{ f \in \mathrm{Bor}(X,\mathbb{R}) \mid f \text{ is a bounded function} \}.$ It is immediate that $\mathrm{Bor}_b(X,\mathbb{R})$ is a unital subalgebra of the algebra of functions $\mathrm{Bor}(X,\mathbb{R})$. Problem 1 offers a trick which is sometimes useful when studying $\mathrm{Bor}_b(X,\mathbb{R})$, in the metric space framework. **Problem 1.** Let (X, d) be a metric space, and consider the corresponding measurable space (X, \mathcal{B}_X) , where \mathcal{B}_X is the Borel σ -algebra of (X, d). Suppose that \mathcal{F} is a collection of bounded functions from X to \mathbb{R} , which has the following properties. - (i) Every bounded continuous function $f: X \to \mathbb{R}$ belongs to \mathcal{F} . - (ii) \mathcal{F} is an algebra of functions. (That is: if $f, g \in \mathcal{F}$ then $fg \in \mathcal{F}$, and $\alpha f + \beta g \in \mathcal{F}$ for every $\alpha, \beta \in \mathbb{R}$.) - (iii) If $(f_n)_{n=1}^{\infty}$ is a sequence of functions in \mathcal{F} which converges pointwise to a bounded function $f: X \to \mathbb{R}$, then it follows that $f \in \mathcal{F}$. Prove that $\mathcal{F} \supseteq \operatorname{Bor}_b(X, \mathbb{R})$. Solution. Claim 1: $I_F \in \mathcal{F}$ for every closed $F \subseteq X$. proof: Let $F \subseteq X$ be closed. For each $n \in \mathbb{N}$, let $D_n := \bigcup_{x \in F} B(x, t_n)$ be open. Clearly, $F \subseteq D_n$ the \mathbb{N} . For each $n \in \mathbb{N}$, let $f_n : X \to \mathbb{R}$ be of such that $0 \subseteq F(x) \subseteq \mathbb{I}$ $\forall x \in X$, $f(x) = \mathbb{I}$ if $x \in F$, f(x) = 0 if $x \in X \setminus D_n$. We will show that $f_n(x) \xrightarrow{n = \infty} I_F(x)$ $\forall x \in X$. If $x \in F$, then $I_F(x) - f_n(x) = 0$ $\forall n \in \mathbb{N}$; if $x \notin F$, then $d_F(x) := \inf \{ d(x, a) \mid a \in F \} > 0$. Since F is closed, and we can pick hot \mathbb{N} such that $f_n(x) \notin A_n \ge 0$, and so $x \notin D_n$ $\forall n \ge n_0$, hence $f_n(x) = 0$ $\forall n \ge n_0$. (Confid on other side) ## [Solution to Problem 1, continued] Thus $f_n(x) \to I_F(x) \ \forall x \in X$, and since each f_n is of and boarded, $(f_n)_{n=1}^{\infty}$ is in \mathcal{F} . Then by property (iii) of \mathcal{F} , $I_F \in \mathcal{F}$. ## Claim 2: IBEF YBEBx. proof: Consider $M:=\{A \subseteq X \mid I_A \in \mathcal{F}\}$. We show this to be a σ -algebra of subsets of X. (AS 1) X is closed, so $I_X \in \mathcal{F} \Rightarrow X \in \mathcal{M}$. (AS2) Let $A\in\mathcal{M}$, $I_A\in\mathcal{F}$. We have that $I_{X\setminus A}=\mathbb{1}-I_A$, where $\mathbb{1}(X)=1$ $\forall X\in X$, and since \mathcal{F} is an algebra of function, and both $\mathbb{1}$, $I_A\in\mathcal{F}$, we get that $I_{X\setminus A}\in\mathcal{F}$. Hence $X\setminus A\in\mathcal{M}$. (o-AS3) First note that if A, B \in M, then $I_{AVB} = I_A + I_B - I_{ANB} = I_A + I_B - I_A \cdot I_B \in \mathcal{F}$ because \mathcal{F} is an algebra. Let $(A_n)_{n=1}^{\infty}$ be in II. By a trivial inequation argument, we have that $I_{A,V...V.} \in \mathcal{F}$, the M. Moreover, $(\lim_{n\to\infty} I_{A,V...VAn})(x) = I_{\mathcal{G},A_n}(x)$ $\forall x \in X$, so $I_{\mathcal{G},A_n} \in \mathcal{F}$, hence \mathcal{G} $A_n \in \mathcal{U}$. Thus M is a σ -algebra of subsets of X. Since M contains all closed subsets of X, it must also contain all open ones, and so $B_X \subseteq M$. Claim 3: Born (X,R) C F. proof: Let FE Bors (X,R). By the result of AHQH. We can Find (gn)=" in Bors (X,R) such that |F(x)-gn(x)| < to VxeX. YneN. Since Boys $(X,R) = \text{span } \{I_A|A \in B_X\}$ (A4Q3), we have that Boys $(X,R) \subseteq \mathcal{F}$ by Claim?, and so $(g_n)_{n=1}^{\infty}$ is in \mathcal{F} Since gn(X) => f(X) YxeX, we have that FEF. Hence Borb(X,R) & F. **Definition.** Let (X, \mathcal{M}, μ) be a measure space, and let f, g be two functions in $\text{Bor}(X, \mathbb{R})$. If there exists a set $N \in \mathcal{M}$ such that $\mu(N) = 0$ and such that f(x) = g(x) for every $x \in X \setminus N$, then we say that f and g coincide almost everywhere- μ , and we write "f = g a.e.- μ ". [Note: If $f, g \in \text{Bor}(X, \mathbb{R})$, then the set $\{x \in X \mid f(x) \neq g(x)\}$ is sure to belong to \mathcal{M} , because it can be written in the form $(f-g)^{-1}(\mathbb{R} \setminus \{0\})$, where $f-g \in \text{Bor}(X,\mathbb{R})$. It is immediate that the above definition could have been phrased by saying "f and g coincide a.e.— μ if and only $\mu(\{x \in X \mid f(x) \neq g(x)\}) = 0$."] **Problem 2.** Let (X, \mathcal{M}, μ) be a measure space, and let f be a function in $Bor^+(X, \mathbb{R})$. - (a) Suppose that f = 0 a.e. $-\mu$. Prove that $\int f d\mu = 0$. - (b) Conversely, suppose that $\int f d\mu = 0$. Prove that f = 0 a.e. $-\mu$. Solution. (a) Let $g \in \operatorname{Bor}_s^+(X,\mathbb{R})$ with $g \leq f$. Then writing g canonically as $g = \sum_{k=1}^n \alpha_k I_{A_k}$ with $\alpha_1, \ldots, \alpha_n \in (0, \infty)$ and $A_1, \ldots, A_n \in \mathcal{B}_X$ with $A_i \cap A_j = \emptyset$ for $i \neq j$, we have that each $A_k \subseteq g^{-1}(0, \infty) \subseteq f^{-1}(0, \infty) = (f - 0)^{-1}(\mathbb{R} \setminus \{0\})$ (since $g \leq f$), whence $$L_s^+(g) = \sum_{k=1}^n \alpha_k \mu(A_k) \le \sum_{k=1}^n \alpha_k \mu(f^{-1}(0,\infty)) = \sum_{k=1}^n \alpha_k \cdot 0 = 0.$$ Thus, $$\int f d\mu = \sup\{L_s^+(g) \mid g \in \text{Bor}_s^+(X, \mathbb{R}), g \le f\} = \sup\{0 \mid g \in \text{Bor}_s^+(X, \mathbb{R}), g \le f\} = 0. \quad \blacksquare$$ (b) We prove the contrapositive. Suppose that $f \neq 0$ a.e.— μ , so $0 < \mu((f-0)^{-1}(\mathbb{R}\setminus\{0\})) = \mu(f^{-1}(0,\infty))$. For each $n \in \mathbb{N}$, let $S_n := f^{-1}(\frac{1}{n},\infty)$. Note that $S_1 \subseteq S_2 \subseteq \cdots \subseteq f^{-1}(0,\infty)$ with $\bigcup_{n=1}^{\infty} S_n = f^{-1}(0,\infty)$, so by continuity along chains, $\lim_{n\to\infty} \mu(S_n) = \mu(f^{-1}(0,\infty))$. Since $\mu(f^{-1}(0,\infty)) > 0$, there is a $N \in \mathbb{N}$ such that $\mu(S_N) > 0$. Then the function $\frac{1}{N}I_{S_N} \in \operatorname{Bor}_s^+(X,\mathbb{R})$ with $\frac{1}{N}I_{S_N} \leq f$ since for any $x \in S_N = f^{-1}(\frac{1}{N},\infty)$, $\frac{1}{N}I_{S_N}(x) = \frac{1}{N} < f(x)$. However, $L_s^+(\frac{1}{N}I_{S_N}) = \frac{1}{N}\mu(S_N) > 0$, so $$\int f d\mu = \sup\{L_s^+(g) \mid g \in \operatorname{Bor}_s^+(X, \mathbb{R}), g \le f\} \ge L_s^+\left(\frac{1}{N}I_{S_N}\right) > 0.$$ Thus, if $\int f d\mu = 0$, then we must have f = 0 a.e.- μ . For Problem 3 we fix a measure space (X, \mathcal{M}, μ) where μ is a finite positive measure $(\mu(X) < \infty)$. We also fix a function $f \in \text{Bor}^+(X, \mathbb{R})$. We assume that f is bounded; that is, there exists $c \geq 0$ such that $0 \leq f(x) \leq c$ for all $x \in X$. The definition of the Lebesgue integral used in Lecture 8 assigns to f a finite integral $$I_{Leb} := \int f \, d\mu$$ (it is immediate that $I_{Leb} \leq c \cdot \mu(X)$, with c as in the preceding sentence). On the other hand, the considerations from Lecture 2 also apply to f and give us another possible approach to the integral, namely we can take the number $$I_{Dar} := \overline{\int} f \, d\mu = \int f \, d\mu.$$ Here the upper and lower integral of f are defined as in Lecture 2, and the fact that they are equal to each other was the content of Proposition 2.6 of that lecture. Your goal for Problem 3 is to show that the two approaches to the integral of f give the same result. Problem 3. In the framework and notations described above, prove that $I_{Leb} = I_{Dar}$. Solution. Consider the a measurable division $\Delta = \{A_1, \ldots, A_n\}$ of X (w.r.t. \mathcal{M}). Let $f(\Delta) = \sum_{i=1}^n (\inf_{A_i} f) I_{A_i} \in \operatorname{Bor}_s^+(X, \mathbb{R})$. It is by definition clear that $f \geq f(\Delta)$. Therefore, $I_{Leb} \geq L_s^+(f(\Delta)) = \sum_{i=1}^n (\inf_{A_i} f) \mu(A_i) = L(f, \Delta)$. As this is true for all divisions Δ of X, it follows that $I_{Leb} \geq I_{Dar}$. On the other hand, let $g(\Delta) = \sum_{i=1}^{n} (\sup_{A_i} f) I_{A_i} \in \operatorname{Bor}_s^+(X,\mathbb{R})$ (note f and therefore g are bounded). It is by definition clear that $f \leq g(\Delta)$. Hence, by the increasing property of the Lebesgue integral, and the fact that the Lebesgue integral extends the "natural" integral on simple functions, we get that $$I_{Leb} \le \int g(\Delta) = L_s^+(g(\Delta)) = \sum_{i=1}^n (\sup_{A_i} f) \mu(A_i) = U(f, \Delta).$$ As this is true for all divisions Δ of X, it follows that $I_{Leb} \leq I_{Dar}$. The two inequalities yield $I_{Leb} = I_{Dar}$, as desired 1+4/