PMath 451/651, Fall Term 2012
Homework Assignment 5 — Solutions
Notation. Let (X, M) be a measurable space. We denote

Bory(X,R) := {f € Bor(X,R) | f is a bounded function}.

It is immediate that Bory(X,R) is a unital subalgebra of the algebra of functions
Bor(X,R). Problem 1 offers a trick which is sometimes useful when studying Bor, (X, R),
in the metric space framework.

Problem 1. Let (X, d) be a metric space, and consider the corresponding measurable
space (X, B, ), where B, is the Borel o-algebra of (X, d). Suppose that F is a collection of
bounded functions from X to R, which has the following properties.

(i)  Every bounded continuous function f : X — R belongs to F.

(ii)  F is an algebra of functions. (That is: if f,g € F then fg € F,
and af + Bg € F for every a, 8 € R.)

(iii) If (fr)S2; is a sequence of functions in F which converges pointwise
to a bounded function f : X — R, then it follows that f € F.

Prove that F 2 Bory(X, R).

Solution.

Qo 1= T eF Tov oueiy dend F2X.
Frsof [,J¥ FCY e VQ&X. For ook wel, Lt E E’%(x’v’\‘) Lo . Cﬁ,wx, o Feba e ).
Fou eadhh welN, Ll e /’< *R L hr gmbi Woad 94 F00 ¢ /YfX
Foa=y F xeF, Too=0 & xe X\D. W wll shay Dok w{ﬂ\"’?T ) e
IF xe B don Tet-Rid=0 %}; i X%&F, <\wq\ {;{xg»wﬁgﬁ(}ig&) aekFiv0
Simie T {6 o ;@c?, anat We ot \:f;( do ot N St Qm% ‘Ex < d; &0 VV\ Pho, @3«“5%
o X4 Dﬂ \"3‘11?‘?«@., YNy ﬁ,{k‘;x@ \/bazlﬁ.{%

<Cou.)r\fl i @g)ﬁé‘f Si{i«\



[Solution to Problem 1, continued]
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Definition.. Let (X, M,u) be a measure space, and let f,g be two functions in
Bor(X,R). If there exists a set N € M such that () = 0 and such that f(z) = g(z) for
every z € X \ N, then we say that f and g coincide almost everywhere-p, and we write

“f =g ae—pu”.

[Note: If f,g € Bor(X,R), then the set {z € X | f(z) # g(z)} is sure to belong to M,
because it can be written in the form (f — g)~!(R\ {0}), where f — g € Bor(X,R). It is
immediate that the above definition could have been phrased by saying “f and g coincide

a.e.—u if and only ,u( {ze X | flz) # g(m)}) =0."]

Problem 2. Let (X, M, 1) be a measure space, and let f be a function in Bor* (X, R).
(a) Suppose that f = 0 a.e.—u. Prove that [ fdu =0.
(b) Conversely, suppose that [ fdu = 0. Prove that f = 0 a.e.~pu.

Solution.

Let g € Bor (X,R) with g < f. Then writing g canonically as g = > opey Crla, with
ag, ... € (0,00) and A;,..., A, € By with A;N A; = § for i # j, we have that
each Ak C 971(0,00) € f71(0,00) = (f — 0)~*(R \ {0}) (since g < f), whence

NOE Z app(Ag) < Zozku(f“l((), ) = Zak -0=0.
k=1 k=1 k=1
Thus,
/fd# =sup{L; (g) | g € Bor{ (X,R), g < f} = sup{0 | g € Bor} (X, R);g <f}=0. =

We plove the contrapositive. Suppose that f # 0 a.e—p, s0 0 < p((f —0)"1(R\{0}))
,u(f '(0,00)). For each n € N, let S, := f- '(£,00). Note that S C S, C
f71(0,00) with [ J22, S, = f“l(O, 00), S0 by continuity along chains, lim,_e p(Sy)
1(f71(0,00)). Since u(f71(0,00)) > 0, there is a N € N such that 1(Sy) > 0. Then

N

the function —-ISN € Bor] (X,R) with £I5, < f since for any z € Sy = (5, 00),
sy (z) =% < f(a). However L (%1sy) = $1(Sn) > 0, so
[ i =sup(tit0) Lo € Bort (R0 < £y 2 1 (15, ) 0
S
/A

Thus, if [ fdu = 0, then we must have f =0 a.e.—[L. ] / |
f



For Problem 3 we fix a measure space (X, M, u) where p is a finite positive measure
(u(X) < 00). We also fix a function f € Bor™(X,R). We assume that f is bounded; that
is, there exists ¢ > 0 such that 0 < f(z) < c for all z € X. The definition of the Lebesgue
integral used in Lecture 8 assigns to f a finite integral

Ipep := /fdﬂ

(it is immediate that Ie < ¢ p(X), with ¢ as in the preceding sentence).
On the other hand, the considerations from Lecture 2 also apply to f and give us another
possible approach to the integral, namely we can take the number

Ipar :=7fdu =lfdu-

Here the upper and lower integral of f are defined as in Lecture 2, and the fact that they
are equal to each other was the content of Proposition 2.6 of that lecture.

Your goal for Problem 3 is to show that the two approaches to the integral of f give the
same result.

Problem 3. In the framework and notations described above, prove that Irey = Ipar.

Solution.

Consider the a measurable division A = {4;,..., 4} of X (wr.t. M). Let f(A) =
Yo (infa, f)la, € Bor! (X,R). It is by definition clear that f > f(A). Therefore, Irep >
LE(f(A)) = S (infa, F)u(A;) = L(f,A). As this is true for all divisions A of X, it

follows that Irep = Ipar

On the other hand, let g(A) = 3% (supy, f)Ia; € Borf (X,R) (note f and therefore
g are bounded). It is by definition clear that f < g(A). Hence, by the increasing property

of the Lebesgue integral, and the fact that the Lebesgue integral extends the “natural”

integral on simple functions, we get that

Iiy < / 9(A) = LH(g(D)) = S (sup Fu(4i) = U(f.A).

j=1

As this is true for all divisions A of X, it follows that Irep < Ipar-

The two inequalities yield Irep = Ipar, as desired. O



