## PMath 451/651, Fall Term 2012

## Homework Assignment 5 – Solutions

**Notation.** Let  $(X, \mathcal{M})$  be a measurable space. We denote

 $\mathrm{Bor}_b(X,\mathbb{R}) := \{ f \in \mathrm{Bor}(X,\mathbb{R}) \mid f \text{ is a bounded function} \}.$ 

It is immediate that  $\mathrm{Bor}_b(X,\mathbb{R})$  is a unital subalgebra of the algebra of functions  $\mathrm{Bor}(X,\mathbb{R})$ . Problem 1 offers a trick which is sometimes useful when studying  $\mathrm{Bor}_b(X,\mathbb{R})$ , in the metric space framework.

**Problem 1.** Let (X, d) be a metric space, and consider the corresponding measurable space  $(X, \mathcal{B}_X)$ , where  $\mathcal{B}_X$  is the Borel  $\sigma$ -algebra of (X, d). Suppose that  $\mathcal{F}$  is a collection of bounded functions from X to  $\mathbb{R}$ , which has the following properties.

- (i) Every bounded continuous function  $f: X \to \mathbb{R}$  belongs to  $\mathcal{F}$ .
- (ii)  $\mathcal{F}$  is an algebra of functions. (That is: if  $f, g \in \mathcal{F}$  then  $fg \in \mathcal{F}$ , and  $\alpha f + \beta g \in \mathcal{F}$  for every  $\alpha, \beta \in \mathbb{R}$ .)
- (iii) If  $(f_n)_{n=1}^{\infty}$  is a sequence of functions in  $\mathcal{F}$  which converges pointwise to a bounded function  $f: X \to \mathbb{R}$ , then it follows that  $f \in \mathcal{F}$ .

Prove that  $\mathcal{F} \supseteq \operatorname{Bor}_b(X, \mathbb{R})$ .

Solution.

Claim 1:  $I_F \in \mathcal{F}$  for every closed  $F \subseteq X$ .

proof: Let  $F \subseteq X$  be closed. For each  $n \in \mathbb{N}$ , let  $D_n := \bigcup_{x \in F} B(x, t_n)$  be open. Clearly,  $F \subseteq D_n$  the  $\mathbb{N}$ .

For each  $n \in \mathbb{N}$ , let  $f_n : X \to \mathbb{R}$  be of such that  $0 \subseteq F(x) \subseteq \mathbb{I}$   $\forall x \in X$ ,  $f(x) = \mathbb{I}$  if  $x \in F$ , f(x) = 0 if  $x \in X \setminus D_n$ . We will show that  $f_n(x) \xrightarrow{n = \infty} I_F(x)$   $\forall x \in X$ .

If  $x \in F$ , then  $I_F(x) - f_n(x) = 0$   $\forall n \in \mathbb{N}$ ; if  $x \notin F$ , then  $d_F(x) := \inf \{ d(x, a) \mid a \in F \} > 0$ .

Since F is closed, and we can pick hot  $\mathbb{N}$  such that  $f_n(x) \notin A_n \ge 0$ , and so  $x \notin D_n$   $\forall n \ge n_0$ , hence  $f_n(x) = 0$   $\forall n \ge n_0$ .

(Confid on other side)

## [Solution to Problem 1, continued]

Thus  $f_n(x) \to I_F(x) \ \forall x \in X$ , and since each  $f_n$  is of and boarded,  $(f_n)_{n=1}^{\infty}$  is in  $\mathcal{F}$ . Then by property (iii) of  $\mathcal{F}$ ,  $I_F \in \mathcal{F}$ .

## Claim 2: IBEF YBEBx.

proof: Consider  $M:=\{A \subseteq X \mid I_A \in \mathcal{F}\}$ . We show this to be a  $\sigma$ -algebra of subsets of X. (AS 1) X is closed, so  $I_X \in \mathcal{F} \Rightarrow X \in \mathcal{M}$ .

(AS2) Let  $A\in\mathcal{M}$ ,  $I_A\in\mathcal{F}$ . We have that  $I_{X\setminus A}=\mathbb{1}-I_A$ , where  $\mathbb{1}(X)=1$   $\forall X\in X$ , and since  $\mathcal{F}$  is an algebra of function, and both  $\mathbb{1}$ ,  $I_A\in\mathcal{F}$ , we get that  $I_{X\setminus A}\in\mathcal{F}$ . Hence  $X\setminus A\in\mathcal{M}$ .

(o-AS3) First note that if A, B  $\in$  M, then  $I_{AVB} = I_A + I_B - I_{ANB} = I_A + I_B - I_A \cdot I_B \in \mathcal{F}$  because  $\mathcal{F}$  is an algebra.

Let  $(A_n)_{n=1}^{\infty}$  be in II. By a trivial inequation argument, we have that  $I_{A,V...V.} \in \mathcal{F}$ , the M. Moreover,  $(\lim_{n\to\infty} I_{A,V...VAn})(x) = I_{\mathcal{G},A_n}(x)$   $\forall x \in X$ , so  $I_{\mathcal{G},A_n} \in \mathcal{F}$ , hence  $\mathcal{G}$   $A_n \in \mathcal{U}$ .

Thus M is a  $\sigma$ -algebra of subsets of X. Since M contains all closed subsets of X, it must also contain all open ones, and so  $B_X \subseteq M$ .

Claim 3: Born (X,R) C F.

proof: Let FE Bors (X,R). By the result of AHQH. We can Find (gn)=" in Bors (X,R) such that |F(x)-gn(x)| < to VxeX. YneN.

Since Boys  $(X,R) = \text{span } \{I_A|A \in B_X\}$  (A4Q3), we have that Boys  $(X,R) \subseteq \mathcal{F}$  by Claim?, and so  $(g_n)_{n=1}^{\infty}$  is in  $\mathcal{F}$ 

Since gn(X) => f(X) YxeX, we have that FEF.

Hence Borb(X,R) & F.



**Definition.** Let  $(X, \mathcal{M}, \mu)$  be a measure space, and let f, g be two functions in  $\text{Bor}(X, \mathbb{R})$ . If there exists a set  $N \in \mathcal{M}$  such that  $\mu(N) = 0$  and such that f(x) = g(x) for every  $x \in X \setminus N$ , then we say that f and g coincide almost everywhere- $\mu$ , and we write "f = g a.e.- $\mu$ ".

[Note: If  $f, g \in \text{Bor}(X, \mathbb{R})$ , then the set  $\{x \in X \mid f(x) \neq g(x)\}$  is sure to belong to  $\mathcal{M}$ , because it can be written in the form  $(f-g)^{-1}(\mathbb{R} \setminus \{0\})$ , where  $f-g \in \text{Bor}(X,\mathbb{R})$ . It is immediate that the above definition could have been phrased by saying "f and g coincide a.e.— $\mu$  if and only  $\mu(\{x \in X \mid f(x) \neq g(x)\}) = 0$ ."]

**Problem 2.** Let  $(X, \mathcal{M}, \mu)$  be a measure space, and let f be a function in  $Bor^+(X, \mathbb{R})$ .

- (a) Suppose that f = 0 a.e.  $-\mu$ . Prove that  $\int f d\mu = 0$ .
- (b) Conversely, suppose that  $\int f d\mu = 0$ . Prove that f = 0 a.e.  $-\mu$ .

Solution.

(a) Let  $g \in \operatorname{Bor}_s^+(X,\mathbb{R})$  with  $g \leq f$ . Then writing g canonically as  $g = \sum_{k=1}^n \alpha_k I_{A_k}$  with  $\alpha_1, \ldots, \alpha_n \in (0, \infty)$  and  $A_1, \ldots, A_n \in \mathcal{B}_X$  with  $A_i \cap A_j = \emptyset$  for  $i \neq j$ , we have that each  $A_k \subseteq g^{-1}(0, \infty) \subseteq f^{-1}(0, \infty) = (f - 0)^{-1}(\mathbb{R} \setminus \{0\})$  (since  $g \leq f$ ), whence

$$L_s^+(g) = \sum_{k=1}^n \alpha_k \mu(A_k) \le \sum_{k=1}^n \alpha_k \mu(f^{-1}(0,\infty)) = \sum_{k=1}^n \alpha_k \cdot 0 = 0.$$

Thus,

$$\int f d\mu = \sup\{L_s^+(g) \mid g \in \text{Bor}_s^+(X, \mathbb{R}), g \le f\} = \sup\{0 \mid g \in \text{Bor}_s^+(X, \mathbb{R}), g \le f\} = 0. \quad \blacksquare$$

(b) We prove the contrapositive. Suppose that  $f \neq 0$  a.e.— $\mu$ , so  $0 < \mu((f-0)^{-1}(\mathbb{R}\setminus\{0\})) = \mu(f^{-1}(0,\infty))$ . For each  $n \in \mathbb{N}$ , let  $S_n := f^{-1}(\frac{1}{n},\infty)$ . Note that  $S_1 \subseteq S_2 \subseteq \cdots \subseteq f^{-1}(0,\infty)$  with  $\bigcup_{n=1}^{\infty} S_n = f^{-1}(0,\infty)$ , so by continuity along chains,  $\lim_{n\to\infty} \mu(S_n) = \mu(f^{-1}(0,\infty))$ . Since  $\mu(f^{-1}(0,\infty)) > 0$ , there is a  $N \in \mathbb{N}$  such that  $\mu(S_N) > 0$ . Then the function  $\frac{1}{N}I_{S_N} \in \operatorname{Bor}_s^+(X,\mathbb{R})$  with  $\frac{1}{N}I_{S_N} \leq f$  since for any  $x \in S_N = f^{-1}(\frac{1}{N},\infty)$ ,  $\frac{1}{N}I_{S_N}(x) = \frac{1}{N} < f(x)$ . However,  $L_s^+(\frac{1}{N}I_{S_N}) = \frac{1}{N}\mu(S_N) > 0$ , so

$$\int f d\mu = \sup\{L_s^+(g) \mid g \in \operatorname{Bor}_s^+(X, \mathbb{R}), g \le f\} \ge L_s^+\left(\frac{1}{N}I_{S_N}\right) > 0.$$

Thus, if  $\int f d\mu = 0$ , then we must have f = 0 a.e.- $\mu$ .



For Problem 3 we fix a measure space  $(X, \mathcal{M}, \mu)$  where  $\mu$  is a finite positive measure  $(\mu(X) < \infty)$ . We also fix a function  $f \in \text{Bor}^+(X, \mathbb{R})$ . We assume that f is bounded; that is, there exists  $c \geq 0$  such that  $0 \leq f(x) \leq c$  for all  $x \in X$ . The definition of the Lebesgue integral used in Lecture 8 assigns to f a finite integral

$$I_{Leb} := \int f \, d\mu$$

(it is immediate that  $I_{Leb} \leq c \cdot \mu(X)$ , with c as in the preceding sentence).

On the other hand, the considerations from Lecture 2 also apply to f and give us another possible approach to the integral, namely we can take the number

$$I_{Dar} := \overline{\int} f \, d\mu = \int f \, d\mu.$$

Here the upper and lower integral of f are defined as in Lecture 2, and the fact that they are equal to each other was the content of Proposition 2.6 of that lecture.

Your goal for Problem 3 is to show that the two approaches to the integral of f give the same result.

Problem 3. In the framework and notations described above, prove that  $I_{Leb} = I_{Dar}$ . Solution.

Consider the a measurable division  $\Delta = \{A_1, \ldots, A_n\}$  of X (w.r.t.  $\mathcal{M}$ ). Let  $f(\Delta) = \sum_{i=1}^n (\inf_{A_i} f) I_{A_i} \in \operatorname{Bor}_s^+(X, \mathbb{R})$ . It is by definition clear that  $f \geq f(\Delta)$ . Therefore,  $I_{Leb} \geq L_s^+(f(\Delta)) = \sum_{i=1}^n (\inf_{A_i} f) \mu(A_i) = L(f, \Delta)$ . As this is true for all divisions  $\Delta$  of X, it follows that  $I_{Leb} \geq I_{Dar}$ .

On the other hand, let  $g(\Delta) = \sum_{i=1}^{n} (\sup_{A_i} f) I_{A_i} \in \operatorname{Bor}_s^+(X,\mathbb{R})$  (note f and therefore g are bounded). It is by definition clear that  $f \leq g(\Delta)$ . Hence, by the increasing property of the Lebesgue integral, and the fact that the Lebesgue integral extends the "natural" integral on simple functions, we get that

$$I_{Leb} \le \int g(\Delta) = L_s^+(g(\Delta)) = \sum_{i=1}^n (\sup_{A_i} f) \mu(A_i) = U(f, \Delta).$$

As this is true for all divisions  $\Delta$  of X, it follows that  $I_{Leb} \leq I_{Dar}$ .

The two inequalities yield  $I_{Leb} = I_{Dar}$ , as desired

1+4/