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PMath 451/651, Fall Term 2012

Homework Assignment 6 – Solutions

Problem 1. Let (X,M, µ) be a measure space, and let f, g be two functions in L1(µ).

(a) Suppose that f = g a.e.–µ (in the sense defined in Problem 2 of Assignment 5).
Prove that

∫
A f dµ =

∫
A g dµ for all A ∈M.

(b) Conversely, suppose that
∫
A f dµ =

∫
A g dµ for all A ∈M. Prove that f = g a.e.–µ.

Solution. (a) Let A be a set inM. Consider the function h := |f−g|·IA . This is a Borel
function, since it is obtained from f, g and IA by operations which preserve measurability.
It is obvious that h is non-negative. Moreover, let us also observe that h is equal to 0 a.e.–µ;
indeed, if we denote {x ∈ X | f(x) 6= g(x)} =: N , then µ(N) = 0 due to the hypothesis
that f = g a.e.–µ, and h vanishes on the complement of N .

We next observe that

|
∫
A
f dµ−

∫
A
g dµ | = |

∫
f IA dµ−

∫
gIA dµ |

= |
∫

(f − g) IA dµ |

≤
∫
|f − g| IA dµ =

∫
h dµ = 0,

where at the last step we use Problem 2(a) from assignment 5.
It follows that |

∫
A f dµ−

∫
A g dµ | = 0, hence that

∫
A f dµ =

∫
A g dµ, as required.

(b) Let us denote f − g =: u. Then u ∈ L1(µ), and for every A ∈M we have that∫
A
u dµ =

∫
A
f dµ−

∫
A
g dµ = 0. (1)

In equation (1) let us consider the special cases when the set A ∈ M being considered is
either P := {x ∈ X | u(x) > 0} or Q := {x ∈ X | u(x) < 0}. We obtain that∫

P
u dµ =

∫
Q
u dµ = 0,

hence that ∫
u IP dµ =

∫
u IQ dµ = 0,

which implies that ∫
u ·
(
IP − IQ

)
dµ = 0. (2)

From how P and Q are defined, it is immediate that u · (IP − IQ) = |u|; so in (2) we have
actually obtained that

∫
|u| dµ = 0.

We can now apply Problem 2(b) from homework assignment 5 to the function |u|, and
this gives us that the set N := {x ∈ X | u(x) 6= 0} has µ(N) = 0. But since u = f − g, the
set N is nothing but {x ∈ X | f(x) 6= g(x)}, and in this way we obtain that f = g a.e.–µ,
as required.
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Problem 2 is about Lebesgue-Stieltjes measures on the Borel σ-algebra BR of the real
line.

If µ : BR → [0,∞] is a Lebesgue-Stieltjes measure and if G is the centered Stieltjes
function associated to µ, it is customary (especially in probability textbooks) to use the
notation “

∫
f(t)dG(t)” instead of “

∫
f(t)dµ(t)”, for a function f ∈ L1(µ). This notation

can be further shortened by saying (somewhat abusively) that we have “dµ(t) = dG(t)”.
We will denote by λ the Lebesgue measure on R. The centered Stieltjes function of λ

is the identity function, hence the shortened notation from the preceding paragraph comes
in this case to “d λ(t) = dt”.

With all these shortened notations, Problem 2 can be summarized by the formula
“dG(t) = G′(t) dt”.

Problem 2. Let G : R → R be a differentiable non-decreasing function such that
G(0) = 0. We denote G′ =: g. On the other hand let µ : BR → [0,∞] be the Lebesgue-
Stieltjes measure which is uniquely determined by the requirement that the centered Stieltjes
function of µ is equal to G.

(a) Prove that g is a non-negative Borel function.

(b) Suppose that g is bounded on every interval [a, b] ⊆ R. Let ν : BR → [0,∞] be the
positive measure defined (in the sense of Lecture 11) by the formula “d ν(t) = g(t)d λ(t)”,
where λ is the Lebesgue measure on R. That is, we put ν(A) :=

∫
A g dλ, ∀A ∈ BR . Prove

that ν = µ.

Solution. (a) For every n ∈ N let us define gn : R→ R by

gn(t) =
G(t+ 1

n)−G(t)
1
n

, t ∈ R.

The function gn is continuous on R (indeed, it is immediate to verify that gn respects the
convergence of sequences in R). In particular it follows that gn is a Borel function.

Now, from the definition of the derivative it is clear that for every fixed t ∈ R we have
limn→∞ gn(t) = G′(t) = g(t). Thus the function g is the pointwise limit of the gn’s. Since
a poinwise limit of a sequence of Borel functions is still a Borel function, we conclude that
g is a Borel function. Finally, we note that g is non-negative, due to the fact that G is
non-decreasing.

(b) We first prove that ν is a Lebesgue-Stieltjes measure. To this end, it suffices to fix
some numbers a < b in R and to prove that ν( [a, b] ) < ∞. And indeed, if γ ≥ 0 is picked
such that g(t) ≤ γ for all t ∈ [a, b], then we have

ν( [a, b] ) =

∫
[a,b]

g(t)d λ(t) ≤
∫

[a,b]

γd λ(t) = γ · (b− a) <∞.

We know that two Lebesgue-Stieltjes measures coincide when they have the same cen-
tered Stieltjes function. Thus in order to prove that µ = ν, it will suffice to prove that
µ and ν have the same centered Stieltjes function. The centered Stieltjes function of µ
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is (by definition) equal to G, hence what we have to show is that the centered Stieltjes
function of ν is G. This in turn, amounts to proving that for every a < b in R we have
ν( (a, b] ) = G(b)−G(a). Keeping in mind how ν is defined, we are thus left to verify that

(∗)
∫

(a,b]

g(t) dλ(t) = G(b)−G(a), ∀ a < b in R.

For the remaining part of the solution we fix a < b in R for which we will verify that (∗)
holds. We will use an anti-derivative for G. More precisely, let H : R → R be the unique
differentiable function on R which has the properties that H ′ = G and H(0) = 0. By the
fundamental theorem of calculus for continuous functions, for every p < q in R we have

H(q)−H(p) =

∫ q

p
G(t) dt (Riemann integral).

We will also consider the functions (gn)∞n=1 that were used in the solution to part (a).
We will find an explicit formula for the integrals of these functions on (a, b]. Since gn is
continuous, its Lebesgue integral on (a, b] coincides with its Riemann integral from a to b:∫

(a,b]

gn dλ =

∫ b

a
gn(t) dt.

The formula that defined gn in part (a) can be re-written in the form

gn = n(Gn −G),

where Gn : R→ R is defined by

Gn(t) = G
(
t+

1

n

)
, t ∈ R.

It is immediate that for any p < q in R we have∫ q

p
Gn(t) dt =

∫ q+1/n

p+1/n
G(s) ds = H(q + 1/n)−H(p+ 1/n).

So then we have∫ b

a
gn(t) = n ·

∫ b

a
Gn(t) dt− n ·

∫ b

a
G(t) dt

= n
(
H(b+ 1/n)−H(a+ 1/n)

)
− n

(
H(b)−H(a)

)
By writing the latter expression as

H(b+ 1
n)−H(b)
1
n

−
H(a+ 1

n)−H(a)
1
n

,

we find that

lim
n→∞

∫ b

a
gn(t) dt = H ′(b)−H ′(a) = G(b)−G(a).
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Now let us recall (from the solution to part (a)) that the functions gn converge pointwise
to g. If we can prove that Lebesgue dominated convergence theorem applies to this situation,
then it will follow that∫

(a,b]

g(t) dλ(t) = lim
n→∞

∫
(a,b]

gn(t) dλ(t) = lim
n→∞

∫ b

a
gn(t) dt = G(b)−G(a),

which is the required formula (∗). Thus in order to finish the solution, we are only left to
find a dominating function for the gn’s, on the interval (a, b]. Since λ( (a, b] ) = b− a <∞,
we can go for a constant dominating function; that is, it suffices to find a constant γ ≥ 0
such that gn(t) ≤ γ for all n ∈ N and t ∈ (a, b].

Finally, let us use the hypothesis that g is bounded on bounded intervals and let us pick
γ such that g(t) ≤ γ for every t ∈ [a, b+ 1]. We claim that this γ does the dominating job
that we need. Indeed, given n ∈ N and t ∈ (a, b], there exists (by the mean value theorem
applied to G on the interval [t, t + 1/n]) an intermediate value s ∈

(
t, t + 1

n

)
⊆ [a, b + 1]

such that gn(t) = G′(s), and thus we have gn(t) = g(s) ≤ γ.
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In Problem 3 we fix a measurable space (X,M) and we consider the space of finite signed
measures Meas±(X,M) that was introduced in Lecture 11. Recall that Meas±(X,M) is
a vector space over R, with operations defined in the natural way: (α1ν1 + α2ν2)(A) :=
α1ν1(A) + α2ν2(A), for every ν1, ν2 ∈ Meas±(X,M) , α1, α2 ∈ R , A ∈ M. It will be
convenient to also use the partial order on Meas±(X,M) defined as follows: for ν1, ν2 ∈
Meas±(X,M) we write “ν1 ≤ ν2” to mean that ν1(A) ≤ ν2(A) for every A ∈ M. Equiva-
lently, one can say that (

ν1 ≤ ν2
)
⇔
(
ν2 − ν1 ∈ Meas+(X,M)

)
,

where Meas+(X,M) is the subset of Meas±(X,M) consisting of positive finite measures.

Problem 3. (a) Let ν be in Meas±(X,M), and consider the total variation measure
|ν| ∈ Meas+(X,M). Prove that for every A ∈M one has

|ν|(A) = sup
{
|ν(B)|+ |ν(C)| | B,C ∈M, B, C ⊆ A, B ∩ C = ∅

}
.

(b) Let ν be a measure in Meas±(X,M). Suppose σ is a measure in Meas+(X,M) with
the property that σ(A) ≥ |ν(A)|, ∀A ∈M. Prove that σ ≥ |ν|.

(c) Let ν be a measure in Meas±(X,M) and let α be a real number. Prove that
|αν | = |α| · |ν|.

(d) Let ν1, ν2 be two measures in Meas±(X,M). Prove that |ν1 + ν2| ≤ |ν1|+ |ν2|.

(e) For every ν ∈ Meas±(X,M), we denote ||ν|| := |ν|(X). Prove that ν 7→ ||ν|| is a
norm on the vector space Meas±(X,M).

Solution. (a) We divide the proof into three claims.

Claim 1. For every B ∈M, one has that | ν(B) | ≤ |ν|(B).
Verification of Claim 1. We distinguish two cases.
Case 1: ν(B) ≥ 0. In this case we write

| ν(B) | = ν(B)

≤ V +(B) (by definition of V +)

≤ |ν|(B) (since V + ≤ |ν|).

Case 2: ν(B) < 0. In this case we write

| ν(B) | = −ν(B)

≤ V −(B) (by definition of V −)

≤ |ν|(B) (since V − ≤ |ν|).

This completes the verification of Claim 1.

Claim 2. Let A be a set in M. Suppose that B,C ∈ M are such that B,C ⊆ A and
B ∩ C = ∅. Then | ν(B) |+ | ν(C) | ≤ |ν|(A).
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Verification of Claim 2. We write

| ν(B) |+ | ν(C) | ≤ |ν|(B) + |ν|(C) (by Claim 1)

= |ν|(B ∪ C) (because |ν| is additive)

≤ |ν|(A),

where the last inequality holds because B ∪ C ⊆ A and because |ν| is an increasing set-
function.

Claim 3. Let A be a set in M. One can find sets B,C ∈ M such that B,C ⊆ A, such
that B ∩ C = ∅, and such that | ν(B) |+ | ν(C) | = |ν|(A).

Verification of Claim 3. Let (Y +, Y −) be a Hahn decomposition for ν, and let us put

B := A ∩ Y +, C := A ∩ Y −.

Then B,C ∈ M and we have B ∪ C = A , B ∩ C = ∅). Moreover, from the properties of a
Hahn decomposition we infer that

B ⊆ Y + ⇒
(
ν(B) = V +(B) and V −(B) = 0

)
, (3)

while on the other hand

C ⊆ Y − ⇒
(
ν(C) = −V −(C) and V +(C) = 0

)
. (4)

From (3) it follows that

| ν(B) | = V +(B) = V +(B) + V −(B) = |ν|(B);

likewise, from (3) it follows that

| ν(C) | = V −(C) = V +(C) + V −(C) = |ν|(C).

We thus conclude that

| ν(B) |+ | ν(C) | = |ν|(B) + |ν|(C) (by the above)

= |ν|(B ∪ C) (because |ν| is additive)

= |ν|(A) (because B ∪ C = A).

So B and C have all the properties required in Claim 3.

The statement of part (a) of the problem follows immediately from the Claims 2 and 3
proved above.

(b) Fix a set A ∈ M, for which we will verify the inequality σ(A) ≥ |ν|(A). In view of
how |ν|(A) is described in part (a) of the problem, it suffices to verify that

σ(A) ≥ | ν(B) |+ | ν(C) |
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whenever B,C ∈ M are such that B,C ⊆ A and B ∩ C = ∅. And indeed, for any such B
and C we have

| ν(B) |+ | ν(C) | ≤ σ(B) + σ(C) (by hypothesis given on σ)

= σ(B ∪ C) (because σ is additive)

≤ σ(A),

where the last inequality holds because B ∪ C ⊆ A and σ is an increasing set-function.

(c) The case when α = 0 is immediate, because in this case both |αν | and |α| · |ν| are
the zero measure. So we will assume that α 6= 0. We will let (as usual) V + and V − denote
the positive and respectively negative variations of ν. On the other hand, we will let W+

and W− denote the positive and respectively negative variations of αν. We have two cases:

Case 1: α > 0. Directly from the definitions of positive/negative variations, it is imme-
diate that in this case we have

W+ = αV + and W− = αV −.

Therefore
|αν | = W+ +W− = αV + + αV − = α|ν|,

as required.

Case 2: α < 0. Still directly from the definitions of positive/negative variations, it is
immediate that in this case we have

W+ = |α|V − and W− = |α|V +.

Therefore
|αν | = W+ +W− = |α|V − + |α|V + = |α| · |ν|,

as required.

(d) We denote |ν1|+ |ν2| =: σ ∈ Meas+(X,M). We have to prove that |ν1 + ν2| ≤ σ. In
view of part (b) of the question, it will suffice to verify that

|(ν1 + ν2)(A)| ≤ σ(A), ∀A ∈M.

So let us fix an A ∈M. We write:

|(ν1 + ν2)(A)| = |ν1(A) + ν2(A)|
≤ |ν1(A)|+ |ν2(A)|
≤ |ν1|(A) + |ν2|(A)

= σ(A),

where at the second inequality sign we used the property of the total variation measure
which was proved at the beginning of the solution to part (a) (cf. Claim 1 in the argument
shown there). This concludes the verification needed for part (d).
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(e) Positivity: For every ν ∈ Meas±(X,M) we have ||ν|| := |ν|(X) ≥ 0. If ||ν|| = 0,
then for an arbitrary B ∈M we can write

0 ≤ |ν(B)| ≤ |ν|(B) ≤ |ν|(X) = ||ν|| = 0

(with the second inequality taken from Claim 1 of the solution to part (a)); this implies
that ν(B) = 0 for all B ∈M, hence that ν is the zero-vector of the space Meas±(X,M).

Homogeneity: For α ∈ R and ν ∈ Meas±(X,M) we have

||αν|| = |αν|(X)

= |α| · |ν|(X) (by (c))

= |α| · ||ν||.

Triangle inequality: for ν1, ν2 ∈ Meas±(X,M) we have

||ν1 + ν2|| = |ν1 + ν2|(X)

≤ (|ν1|+ |ν2|)(X) (by (d))

= |ν1|(X) + |ν2|(X)

= ||ν1||+ ||ν2||.


