PMath 451/651, Fall Term 2012

Homework Assignment 6 – Solutions

Problem 1. Let (X, \mathcal{M}, μ) be a measure space, and let f, g be two functions in $\mathcal{L}^1(\mu)$.

(a) Suppose that f = g a.e.- μ (in the sense defined in Problem 2 of Assignment 5). Prove that $\int_A f \, d\mu = \int_A g \, d\mu$ for all $A \in \mathcal{M}$.

(b) Conversely, suppose that $\int_A f \, d\mu = \int_A g \, d\mu$ for all $A \in \mathcal{M}$. Prove that f = g a.e.- μ .

Solution. (a) Let A be a set in \mathcal{M} . Consider the function $h := |f-g| \cdot I_A$. This is a Borel function, since it is obtained from f, g and I_A by operations which preserve measurability. It is obvious that h is non-negative. Moreover, let us also observe that h is equal to 0 a.e. $-\mu$; indeed, if we denote $\{x \in X \mid f(x) \neq g(x)\} =: N$, then $\mu(N) = 0$ due to the hypothesis that f = g a.e. $-\mu$, and h vanishes on the complement of N.

We next observe that

$$\begin{split} \mid \int_{A} f \, d\mu - \int_{A} g \, d\mu \mid &= \mid \int f \, I_{A} \, d\mu - \int g I_{A} \, d\mu \mid \\ &= \mid \int (f - g) \, I_{A} \, d\mu \mid \\ &\leq \int \left| f - g \right| I_{A} \, d\mu = \int h \, d\mu = 0, \end{split}$$

where at the last step we use Problem 2(a) from assignment 5.

It follows that $| \int_A f \, d\mu - \int_A g \, d\mu | = 0$, hence that $\int_A f \, d\mu = \int_A g \, d\mu$, as required.

(b) Let us denote f - g =: u. Then $u \in \mathcal{L}^1(\mu)$, and for every $A \in \mathcal{M}$ we have that

$$\int_{A} u \, d\mu = \int_{A} f \, d\mu - \int_{A} g \, d\mu = 0. \tag{1}$$

In equation (1) let us consider the special cases when the set $A \in \mathcal{M}$ being considered is either $P := \{x \in X \mid u(x) > 0\}$ or $Q := \{x \in X \mid u(x) < 0\}$. We obtain that

$$\int_P u \, d\mu = \int_Q u \, d\mu = 0$$

hence that

$$\int u I_P \, d\mu = \int u I_Q \, d\mu = 0,$$

which implies that

$$\int u \cdot \left(I_P - I_Q\right) d\mu = 0. \tag{2}$$

From how P and Q are defined, it is immediate that $u \cdot (I_P - I_Q) = |u|$; so in (2) we have actually obtained that $\int |u| d\mu = 0$.

We can now apply Problem 2(b) from homework assignment 5 to the function |u|, and this gives us that the set $N := \{x \in X \mid u(x) \neq 0\}$ has $\mu(N) = 0$. But since u = f - g, the set N is nothing but $\{x \in X \mid f(x) \neq g(x)\}$, and in this way we obtain that f = g a.e. $-\mu$, as required. Problem 2 is about Lebesgue-Stieltjes measures on the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$ of the real line.

If $\mu : \mathcal{B}_{\mathbb{R}} \to [0, \infty]$ is a Lebesgue-Stieltjes measure and if G is the centered Stieltjes function associated to μ , it is customary (especially in probability textbooks) to use the notation " $\int f(t) dG(t)$ " instead of " $\int f(t) d\mu(t)$ ", for a function $f \in \mathcal{L}^1(\mu)$. This notation can be further shortened by saying (somewhat abusively) that we have " $d\mu(t) = dG(t)$ ".

We will denote by λ the Lebesgue measure on \mathbb{R} . The centered Stieltjes function of λ is the identity function, hence the shortened notation from the preceding paragraph comes in this case to " $d\lambda(t) = dt$ ".

With all these shortened notations, Problem 2 can be summarized by the formula "d G(t) = G'(t) dt".

Problem 2. Let $G : \mathbb{R} \to \mathbb{R}$ be a differentiable non-decreasing function such that G(0) = 0. We denote G' =: g. On the other hand let $\mu : \mathcal{B}_{\mathbb{R}} \to [0, \infty]$ be the Lebesgue-Stieltjes measure which is uniquely determined by the requirement that the centered Stieltjes function of μ is equal to G.

(a) Prove that g is a non-negative Borel function.

(b) Suppose that g is bounded on every interval $[a, b] \subseteq \mathbb{R}$. Let $\nu : \mathcal{B}_{\mathbb{R}} \to [0, \infty]$ be the positive measure defined (in the sense of Lecture 11) by the formula " $d\nu(t) = g(t)d\lambda(t)$ ", where λ is the Lebesgue measure on \mathbb{R} . That is, we put $\nu(A) := \int_A g \, d\lambda$, $\forall A \in \mathcal{B}_{\mathbb{R}}$. Prove that $\nu = \mu$.

Solution. (a) For every $n \in \mathbb{N}$ let us define $g_n : \mathbb{R} \to \mathbb{R}$ by

$$g_n(t) = \frac{G(t+\frac{1}{n}) - G(t)}{\frac{1}{n}}, \quad t \in \mathbb{R}.$$

The function g_n is continuous on \mathbb{R} (indeed, it is immediate to verify that g_n respects the convergence of sequences in \mathbb{R}). In particular it follows that g_n is a Borel function.

Now, from the definition of the derivative it is clear that for every fixed $t \in \mathbb{R}$ we have $\lim_{n\to\infty} g_n(t) = G'(t) = g(t)$. Thus the function g is the pointwise limit of the g_n 's. Since a poinwise limit of a sequence of Borel functions is still a Borel function, we conclude that g is a Borel function. Finally, we note that g is non-negative, due to the fact that G is non-decreasing.

(b) We first prove that ν is a Lebesgue-Stieltjes measure. To this end, it suffices to fix some numbers a < b in \mathbb{R} and to prove that $\nu([a, b]) < \infty$. And indeed, if $\gamma \ge 0$ is picked such that $g(t) \le \gamma$ for all $t \in [a, b]$, then we have

$$\nu([a,b]) = \int_{[a,b]} g(t) d\lambda(t) \le \int_{[a,b]} \gamma d\lambda(t) = \gamma \cdot (b-a) < \infty$$

We know that two Lebesgue-Stieltjes measures coincide when they have the same centered Stieltjes function. Thus in order to prove that $\mu = \nu$, it will suffice to prove that μ and ν have the same centered Stieltjes function. The centered Stieltjes function of μ is (by definition) equal to G, hence what we have to show is that the centered Stieltjes function of ν is G. This in turn, amounts to proving that for every a < b in \mathbb{R} we have $\nu((a, b]) = G(b) - G(a)$. Keeping in mind how ν is defined, we are thus left to verify that

(*)
$$\int_{(a,b]} g(t) \, d\lambda(t) = G(b) - G(a), \quad \forall a < b \text{ in } \mathbb{R}.$$

For the remaining part of the solution we fix a < b in \mathbb{R} for which we will verify that (*) holds. We will use an anti-derivative for G. More precisely, let $H : \mathbb{R} \to \mathbb{R}$ be the unique differentiable function on \mathbb{R} which has the properties that H' = G and H(0) = 0. By the fundamental theorem of calculus for continuous functions, for every p < q in \mathbb{R} we have

$$H(q) - H(p) = \int_{p}^{q} G(t) dt$$
 (Riemann integral).

We will also consider the functions $(g_n)_{n=1}^{\infty}$ that were used in the solution to part (a). We will find an explicit formula for the integrals of these functions on (a, b]. Since g_n is continuous, its Lebesgue integral on (a, b] coincides with its Riemann integral from a to b:

$$\int_{(a,b]} g_n \, d\lambda = \int_a^b g_n(t) \, dt.$$

The formula that defined g_n in part (a) can be re-written in the form

$$g_n = n(G_n - G),$$

where $G_n : \mathbb{R} \to \mathbb{R}$ is defined by

$$G_n(t) = G\left(t + \frac{1}{n}\right), \ t \in \mathbb{R}.$$

It is immediate that for any p < q in \mathbb{R} we have

$$\int_{p}^{q} G_{n}(t) dt = \int_{p+1/n}^{q+1/n} G(s) ds = H(q+1/n) - H(p+1/n).$$

So then we have

$$\int_{a}^{b} g_{n}(t) = n \cdot \int_{a}^{b} G_{n}(t) dt - n \cdot \int_{a}^{b} G(t) dt$$
$$= n \left(H(b + 1/n) - H(a + 1/n) \right) - n \left(H(b) - H(a) \right)$$

By writing the latter expression as

$$\frac{H(b+\frac{1}{n}) - H(b)}{\frac{1}{n}} - \frac{H(a+\frac{1}{n}) - H(a)}{\frac{1}{n}}$$

we find that

$$\lim_{n \to \infty} \int_{a}^{b} g_{n}(t) \, dt = H'(b) - H'(a) = G(b) - G(a).$$

Now let us recall (from the solution to part (a)) that the functions g_n converge pointwise to g. If we can prove that Lebesgue dominated convergence theorem applies to this situation, then it will follow that

$$\int_{(a,b]} g(t) \, d\lambda(t) = \lim_{n \to \infty} \int_{(a,b]} g_n(t) \, d\lambda(t) = \lim_{n \to \infty} \int_a^b g_n(t) \, dt = G(b) - G(a),$$

which is the required formula (*). Thus in order to finish the solution, we are only left to find a dominating function for the g_n 's, on the interval (a, b]. Since $\lambda((a, b]) = b - a < \infty$, we can go for a constant dominating function; that is, it suffices to find a constant $\gamma \ge 0$ such that $g_n(t) \le \gamma$ for all $n \in \mathbb{N}$ and $t \in (a, b]$.

Finally, let us use the hypothesis that g is bounded on bounded intervals and let us pick γ such that $g(t) \leq \gamma$ for every $t \in [a, b+1]$. We claim that this γ does the dominating job that we need. Indeed, given $n \in \mathbb{N}$ and $t \in (a, b]$, there exists (by the mean value theorem applied to G on the interval [t, t + 1/n]) an intermediate value $s \in (t, t + \frac{1}{n}) \subseteq [a, b+1]$ such that $g_n(t) = G'(s)$, and thus we have $g_n(t) = g(s) \leq \gamma$.

In Problem 3 we fix a measurable space (X, \mathcal{M}) and we consider the space of finite signed measures $\operatorname{Meas}^{\pm}(X, \mathcal{M})$ that was introduced in Lecture 11. Recall that $\operatorname{Meas}^{\pm}(X, \mathcal{M})$ is a vector space over \mathbb{R} , with operations defined in the natural way: $(\alpha_1\nu_1 + \alpha_2\nu_2)(A) :=$ $\alpha_1\nu_1(A) + \alpha_2\nu_2(A)$, for every $\nu_1, \nu_2 \in \operatorname{Meas}^{\pm}(X, \mathcal{M})$, $\alpha_1, \alpha_2 \in \mathbb{R}$, $A \in \mathcal{M}$. It will be convenient to also use the partial order on $\operatorname{Meas}^{\pm}(X, \mathcal{M})$ defined as follows: for $\nu_1, \nu_2 \in$ $\operatorname{Meas}^{\pm}(X, \mathcal{M})$ we write " $\nu_1 \leq \nu_2$ " to mean that $\nu_1(A) \leq \nu_2(A)$ for every $A \in \mathcal{M}$. Equivalently, one can say that

$$(\nu_1 \leq \nu_2) \Leftrightarrow (\nu_2 - \nu_1 \in \operatorname{Meas}^+(X, \mathcal{M})),$$

where $\operatorname{Meas}^+(X, \mathcal{M})$ is the subset of $\operatorname{Meas}^{\pm}(X, \mathcal{M})$ consisting of positive finite measures.

Problem 3. (a) Let ν be in Meas[±](X, \mathcal{M}), and consider the total variation measure $|\nu| \in \text{Meas}^+(X, \mathcal{M})$. Prove that for every $A \in \mathcal{M}$ one has

$$|\nu|(A) = \sup\{ |\nu(B)| + |\nu(C)| \mid B, C \in \mathcal{M}, B, C \subseteq A, B \cap C = \emptyset \}.$$

(b) Let ν be a measure in Meas[±](X, \mathcal{M}). Suppose σ is a measure in Meas⁺(X, \mathcal{M}) with the property that $\sigma(A) \geq |\nu(A)|, \forall A \in \mathcal{M}$. Prove that $\sigma \geq |\nu|$.

(c) Let ν be a measure in Meas[±](X, \mathcal{M}) and let α be a real number. Prove that $|\alpha\nu| = |\alpha| \cdot |\nu|$.

(d) Let ν_1, ν_2 be two measures in Meas[±] (X, \mathcal{M}) . Prove that $|\nu_1 + \nu_2| \leq |\nu_1| + |\nu_2|$.

(e) For every $\nu \in \text{Meas}^{\pm}(X, \mathcal{M})$, we denote $||\nu|| := |\nu|(X)$. Prove that $\nu \mapsto ||\nu||$ is a norm on the vector space $\text{Meas}^{\pm}(X, \mathcal{M})$.

Solution. (a) We divide the proof into three claims.

Claim 1. For every $B \in \mathcal{M}$, one has that $|\nu(B)| \leq |\nu|(B)$. Verification of Claim 1. We distinguish two cases. Case 1: $\nu(B) \geq 0$. In this case we write

$$|\nu(B)| = \nu(B)$$

$$\leq V^{+}(B) \quad \text{(by definition of } V^{+})$$

$$\leq |\nu|(B) \quad \text{(since } V^{+} \leq |\nu|).$$

Case 2: $\nu(B) < 0$. In this case we write

$$|\nu(B)| = -\nu(B)$$

$$\leq V^{-}(B) \quad \text{(by definition of } V^{-})$$

$$\leq |\nu|(B) \quad \text{(since } V^{-} \leq |\nu|).$$

This completes the verification of Claim 1.

Claim 2. Let A be a set in \mathcal{M} . Suppose that $B, C \in \mathcal{M}$ are such that $B, C \subseteq A$ and $B \cap C = \emptyset$. Then $|\nu(B)| + |\nu(C)| \leq |\nu|(A)$.

Verification of Claim 2. We write

$$\begin{aligned} |\nu(B)| + |\nu(C)| &\leq |\nu|(B) + |\nu|(C) \quad \text{(by Claim 1)} \\ &= |\nu|(B \cup C) \quad \text{(because } |\nu| \text{ is additive}) \\ &\leq |\nu|(A), \end{aligned}$$

where the last inequality holds because $B \cup C \subseteq A$ and because $|\nu|$ is an increasing setfunction.

Claim 3. Let A be a set in \mathcal{M} . One can find sets $B, C \in \mathcal{M}$ such that $B, C \subseteq A$, such that $B \cap C = \emptyset$, and such that $|\nu(B)| + |\nu(C)| = |\nu|(A)$.

Verification of Claim 3. Let (Y^+, Y^-) be a Hahn decomposition for ν , and let us put

$$B := A \cap Y^+, \quad C := A \cap Y^-.$$

Then $B, C \in \mathcal{M}$ and we have $B \cup C = A$, $B \cap C = \emptyset$). Moreover, from the properties of a Hahn decomposition we infer that

$$B \subseteq Y^+ \Rightarrow \Big(\nu(B) = V^+(B) \text{ and } V^-(B) = 0\Big), \tag{3}$$

while on the other hand

$$C \subseteq Y^{-} \Rightarrow \left(\nu(C) = -V^{-}(C) \text{ and } V^{+}(C) = 0\right).$$
(4)

From (3) it follows that

$$|\nu(B)| = V^+(B) = V^+(B) + V^-(B) = |\nu|(B);$$

likewise, from (3) it follows that

$$|\nu(C)| = V^{-}(C) = V^{+}(C) + V^{-}(C) = |\nu|(C).$$

We thus conclude that

$$|\nu(B)| + |\nu(C)| = |\nu|(B) + |\nu|(C) \quad \text{(by the above)}$$
$$= |\nu|(B \cup C) \quad \text{(because } |\nu| \text{ is additive)}$$
$$= |\nu|(A) \quad \text{(because } B \cup C = A\text{).}$$

So B and C have all the properties required in Claim 3.

The statement of part (a) of the problem follows immediately from the Claims 2 and 3 proved above.

(b) Fix a set $A \in \mathcal{M}$, for which we will verify the inequality $\sigma(A) \ge |\nu|(A)$. In view of how $|\nu|(A)$ is described in part (a) of the problem, it suffices to verify that

$$\sigma(A) \ge |\nu(B)| + |\nu(C)|$$

whenever $B, C \in \mathcal{M}$ are such that $B, C \subseteq A$ and $B \cap C = \emptyset$. And indeed, for any such B and C we have

$$|\nu(B)| + |\nu(C)| \le \sigma(B) + \sigma(C) \quad \text{(by hypothesis given on } \sigma)$$
$$= \sigma(B \cup C) \quad \text{(because } \sigma \text{ is additive)}$$
$$\le \sigma(A),$$

where the last inequality holds because $B \cup C \subseteq A$ and σ is an increasing set-function.

(c) The case when $\alpha = 0$ is immediate, because in this case both $|\alpha\nu|$ and $|\alpha| \cdot |\nu|$ are the zero measure. So we will assume that $\alpha \neq 0$. We will let (as usual) V^+ and V^- denote the positive and respectively negative variations of ν . On the other hand, we will let W^+ and W^- denote the positive and respectively negative variations of $\alpha\nu$. We have two cases:

Case 1: $\alpha > 0$. Directly from the definitions of positive/negative variations, it is immediate that in this case we have

$$W^+ = \alpha V^+$$
 and $W^- = \alpha V^-$.

Therefore

$$|\alpha\nu| = W^{+} + W^{-} = \alpha V^{+} + \alpha V^{-} = \alpha |\nu|,$$

as required.

Case 2: $\alpha < 0$. Still directly from the definitions of positive/negative variations, it is immediate that in this case we have

$$W^+ = |\alpha| V^-$$
 and $W^- = |\alpha| V^+$.

Therefore

$$|\alpha\nu| = W^+ + W^- = |\alpha|V^- + |\alpha|V^+ = |\alpha| \cdot |\nu|$$

as required.

(d) We denote $|\nu_1| + |\nu_2| =: \sigma \in \text{Meas}^+(X, \mathcal{M})$. We have to prove that $|\nu_1 + \nu_2| \leq \sigma$. In view of part (b) of the question, it will suffice to verify that

$$|(\nu_1 + \nu_2)(A)| \le \sigma(A), \quad \forall A \in \mathcal{M}.$$

So let us fix an $A \in \mathcal{M}$. We write:

$$\begin{aligned} |(\nu_1 + \nu_2)(A)| &= |\nu_1(A) + \nu_2(A)| \\ &\leq |\nu_1(A)| + |\nu_2(A)| \\ &\leq |\nu_1|(A) + |\nu_2|(A) \\ &= \sigma(A), \end{aligned}$$

where at the second inequality sign we used the property of the total variation measure which was proved at the beginning of the solution to part (a) (cf. Claim 1 in the argument shown there). This concludes the verification needed for part (d).

$$0 \le |\nu(B)| \le |\nu|(B) \le |\nu|(X) = ||\nu|| = 0$$

(with the second inequality taken from Claim 1 of the solution to part (a)); this implies that $\nu(B) = 0$ for all $B \in \mathcal{M}$, hence that ν is the zero-vector of the space Meas[±](X, \mathcal{M}).

Homogeneity: For $\alpha \in \mathbb{R}$ and $\nu \in \text{Meas}^{\pm}(X, \mathcal{M})$ we have

$$\begin{aligned} ||\alpha \nu|| &= |\alpha \nu|(X) \\ &= |\alpha| \cdot |\nu|(X) \quad (by (c)) \\ &= |\alpha| \cdot ||\nu||. \end{aligned}$$

Triangle inequality: for $\nu_1, \nu_2 \in \text{Meas}^{\pm}(X, \mathcal{M})$ we have

$$||\nu_1 + \nu_2|| = |\nu_1 + \nu_2|(X)$$

$$\leq (|\nu_1| + |\nu_2|)(X) \quad (by (d))$$

$$= |\nu_1|(X) + |\nu_2|(X)$$

$$= ||\nu_1|| + ||\nu_2||.$$