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PMath 451/651, Fall Term 2012

Homework Assignment 7 – Solutions

Problem 1 asks you to verify a general statement about Borel functions which was
accepted (without proof) in class, in the lecture on the Radon-Nikodym theorem.

Problem 1. Let (X,M) be a measurable space. Suppose we are given a family
{Bt | t ∈ Q ∩ [0, 1]} of sets from M such that B1 = X and such that(

s, t ∈ Q ∩ [0, 1]
and s < t

)
⇒ Bs ⊆ Bt.

Prove that there exists a function g ∈ Bor(X,R), with 0 ≤ g(x) ≤ 1 for every x ∈ X, and
such that for every t ∈ Q ∩ [0, 1] we have the implications:{

x ∈ Bt ⇒ g(x) ≤ t
x ∈ X \Bt ⇒ g(x) ≥ t.

Solution. For every x ∈ X, we define

g(x) := inf{t ∈ Q ∩ [0, 1] | x ∈ Bt}. (1)

This definition makes sense because {t ∈ Q ∩ [0, 1] | x ∈ Bt} is a nonempty subset of [0, 1]
(we know for sure it is nonempty, since it contains the number 1); so the infimum of the set
is well-defined, and is some number in [0, 1].

Equation (1) defines a function g : X → R. It is obvious that 0 ≤ g(x) ≤ 1 for every
x ∈ X.

Claim 1. g is a Borel function.
Verification of Claim 1. For every t ∈ Q ∩ [0, 1] let us consider the function

ft := tIBt
+ I

X\Bt
.

In other words, ft is defined such that ft(x) = t for every x ∈ Bt and such that ft(x) = 1
for every x ∈ X \Bt. The definition of the function g in (1) can be rephrased in the form

g(t) = inf{ft(x) | t ∈ Q ∩ [0, 1]}.

Now, every ft is a Borel function (because it is obtained by algebraic operations from the
indicator functions of Bt and X \ Bt). Since it was proved in class that the infimum of a
countable collection of Borel functions is still a Borel function, we conclude that g is a Borel
function as well.

Claim 2. g satisfies the implications required in the statement of the problem.
Verification of Claim 2. Fix a number to ∈ Q ∩ [0, 1] and an element x ∈ X. We have

two cases to consider.

Case 1. x ∈ Bto . In this case the infimum defining g(x) in (1) includes the number to,
and it follows that g(x) ≤ to.
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Case 2. x 6∈ Bto . In this case we have to verify that g(x) ≥ to. Assume by contradiction
that g(x) < to. From the definition of g(x) as an infimum it then follows that there exists
t < to in Q ∩ [0, 1] such that x ∈ Bt. For this t we must have Bt ⊆ Bto (because t < to
and by the hypothesis of how the sets Bt are included inside each other). So then we get
x ∈ Bt ⊆ Bto , in contradiction to the fact that x 6∈ Bto . Thus the assumption g(x) < to
leads to contradiction, and it follows that g(x) ≥ to, as we had to prove.

In Problem 2 we consider the framework used in class for the Lebesgue decomposition
theorem. The problem asks you to prove the uniqueness of the decomposition. (Note:
the proof of uniqueness doesn’t require µ to be σ-finite. But you are welcome to add the
finiteness or σ-finiteness of µ to the hypotheses of the problem, if you find that to be useful.)

Problem 2. Let (X,M, µ) be a measure space, and let ν be a measure in Meas+(X,M).
Suppose that the measures ν1, ν2, σ1, σ2 ∈ Meas+(X,M) satisfy the following conditions:

(i) ν1 + ν2 = ν = σ1 + σ2;

(ii) ν1 � µ and σ1 � µ;

(iii) ν2 ⊥ µ and σ2 ⊥ µ.

Prove that ν1 = σ1 and ν2 = σ2.

Solution. We divide the argument into three claims.

Claim 1. There exists a set N ∈ M such that µ(N) = 0 and such that both ν2 and σ2
are concentrated on N .

Verification of Claim 1. From the hypothesis that ν2 ⊥ µ we infer the existence of
N ′ ∈ M such that ν2 is concentrated on N ′ and µ is concentrated on X \ N ′. The latter
condition simply means that µ(N ′) = 0.

Likewise, from the hypothesis that σ2 ⊥ µ we infer the existence of N ′′ ∈ M with
µ(N ′′) = 0 and such that σ2 is concentrated on N ′.

Let us putN = N ′∪N ′′ ∈M. Then µ(N) = 0 (because 0 ≤ µ(N) ≤ µ(N ′)+µ(N ′′) = 0).
On the other hand we have that ν2 is concentrated on N (because ν2 is concentrated on
N ′ ⊆ N) and that σ2 is concentrated on N (because σ2 is concentrated on N ′′ ⊆ N). So N
has all the properties required in Claim 1.
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Claim 2. Let the set N be as in Claim 1. Then for every A ∈M we have that

ν1(A) = ν(A \N) = σ1(A).

Verification of Claim 2. Let A be a set inM. We have A = (A∩N)∪ (A \N), disjoint
union, hence

ν1(A) = ν1(A ∩N) + ν1(A \N). (2)

We know that µ(N) = 0, which implies that µ(A ∩N) = 0 as well (since 0 ≤ µ(A ∩N) ≤
µ(N) = 0). But ν1 � µ; so it follows that ν1(A ∩N) = 0, and Equation (2) reduces to

ν1(A) = ν1(A \N). (3)

We next use the fact that ν2 is concentrated on N , which means by definition that
ν2(X \N) = 0. Since A \N is a subset of X \N , it follows that ν2(A \N) = 0 as well. But
then in (3) we can continue as follows:

ν1(A) = ν1(A \N)

= ν1(A \N) + ν2(A \N)

= ν(A \N) (since ν1 + ν2 = ν).

This proves the first of the two equalities stated in Claim 2. The verification of the equality
σ1(A) = ν(A \N) is done in exactly the the same way, by replacing ν1 and ν2 with σ1 and
σ2 throughout the argument.

Claim 3. ν1 = σ1 and ν2 = σ2.
Verification of Claim 3. The equality ν1 = σ1 is given by Claim 2. The equality ν2 = σ2

then also follows, since ν2 = ν − ν1 = ν − σ1 = σ2.

The verification of Claim 3 concludes the solution to this problem.
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In Problem 3 we use the notation Bn for the Borel σ-algebra of (Rn, dn), where dn is
the Euclidean distance on Rn (for some positive integer n).

Also, for A ⊆ Rm and B ⊆ Rn we will denote, as is usual,

A×B := {(a, b) | a ∈ A, b ∈ B} ⊆ Rm+n.

Problem 3. Let m,n be two positive integers.

(a) Prove that if A ∈ Bm and B ∈ Bn, then the Cartesian product A×B belongs to the
Borel σ-algebra Bm+n.

(b) Consider the collection P of subsets of Rm+n defined as follows:

P = {A×B | A ∈ Bm and B ∈ Bn}.

Prove that the σ-algebra generated by P is equal to Bm+n.

Solution. (a) Let us denote by Q1 the collection of open intervals of R defined as
follows:

Q1 = {(a, b) | a < b in Q} ∪ {∅,R}.

Moreover, for every k ∈ N let us denote

Qk = {I1 × I2 × · · · × Ik | I1, . . . , Ik ∈ Q1}.

Then (as known from preceding analysis courses) for every k ∈ N we have that Qk is a
countable basis of open sets for (Rk, dk). In other words, every open subset of Rk can be
written as a (necessarily countable) union of sets from Qk. An immediate consequence of
this fact is that the σ-algebra generated by Qk is equal to Bk.

Now let us consider the positive integers m,n that are given in this problem. We will
arrive to the statement of part (a) of the problem in two stages, presented in the following
two claims.

Claim 1. If Q ∈ Qm and B ∈ Bn, then Q×B ∈ Bm+n.
Verification of Claim 1. Fix Q ∈ Qm, and consider the collection of sets

S = {B ∈ Bn | Q×B ∈ Bm+n}.

We have to verify that S = Bn. Let us observe that S ⊇ Qn; indeed, it is clear that if
B ∈ Qn, then Q×B ∈ Qm+n ⊆ Bm+n.

In order to complete the verification of Claim 1, we will prove that S is a σ-algebra.
Once this is done, it will follow that S contains the σ-algebra generated by Qn, which is
Bn, and the equality S = Bn will follow.

So let us verify that S satisfies the three axioms used to define a σ-algebra.
(AS1) Rn ∈ S because Q× Rn ∈ Qm+n ⊆ Bm+n.
(AS2) Suppose that B ∈ S, and consider the complement Rn \B. It is immediate that

Q× (Rn \B) = (Q× Rn) \ (Q×B).
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The sets Q×Rn and Q×B belong to Bm+n (the first one from (AS1), and the second one
because of the fact that B ∈ S). The set-difference (Q×Rn) \ (Q×B) must therefore also
belong to Bm+n, and it follows that Rn \B ∈ S.

(σ-AS3). Suppose that (Bk)∞k=1 are from S, and consider the union B = ∪∞k=1Bk. It is
immediate that

Q× (∪∞k=1Bk) = ∪∞k=1(Q×Bk).

Each of the sets Q × Bk belongs to Bm+n (because Bk ∈ S) and Bm+n is closed under
countable unions; hence ∪∞k=1(Q × Bk) is in Bm+n, which implies that ∪∞k=1Bk ∈ S. (This
ends the verification of Claim 1.)

Claim 2. If A ∈ Bm and B ∈ Bn, then A×B ∈ Bm+n.
Verification of Claim 2. Fix B ∈ Bn, and consider the collection of sets

T = {A ∈ Bm | A×B ∈ Bm+n}.

We have to verify that T = Bm.
The collection of sets T is a a σ-algebra. The proof of this fact is very similar to the proof

shown in the verification of Claim 1 (for the collection of sets S that had appeared there),
where now the needed Boolean operations such as complement or union are performed on
the first component of the Cartesian products.

On the other hand Claim 1 gives us that T ⊇ Qm. So then T must contain the σ-algebra
generated by Qm, which is Bm. This forces the equality T = Qm, and ends the verification
of Claim 2 (also ends the solution of part (a) of the problem).

(b) Let U denote the σ-algebra generated by P. We have to prove that U = Bm+n.

“⊆” Bm+n is a σ-algebra, and Bm+n contains P by part (a) of the problem. Hence Bm+n

must contain the σ-algebra generated by P, which is U .

“⊇” By specializing A ∈ Qm and B ∈ Qn in the definition of P, we see that P ⊇ Qm+n.
Hence U ⊇ Qm+n. Since U is a σ-algebra, it follows that U must contain the σ-algebra
generated by Qm+n, which is Bm+n.


